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ABSTRACT 1 

Short-term and long-term bicycle counts are important sources of information for researchers and 2 

practitioners in the transportation field. In comparison with other road users, automated data 3 

collection for cyclists is a challenging task. This paper presents and evaluates an automated 4 

video-based method for counting bicycles in different environments such as intersections and road 5 

segments. The method consists of three different elements: mobile video-camera-mast hardware, 6 

moving road user detection and tracking techniques, and classification-counting algorithms. The 7 

results indicate that the method is highly accurate at gathering short-term bicycle counts in 8 

locations where traditional technologies such as loop detectors and pneumatic tubes, do not work 9 

properly. One of the main advantages of the method is its ability to count cyclists flow for different 10 

movements with different origins and destinations, even in complex environments with mixed 11 

traffic such as intersections. In addition to counting cyclists, the trajectory data gathered through 12 

this method can also be used for a variety of purposes such as cyclist behaviour and road safety 13 

studies. For 5 minute interval counts, the accuracy of the proposed method ranged from 73 % for 14 

intersections without a cycle track to 90 % for road segments with a cycle track, while for 15 15 

minute interval counts, the accuracy ranged from 81 % for intersections without a cycle track to 93 16 

% for road segments with a cycle track. 17 

 18 

Keywords: Bicycle Counting, Video Analysis, Traffic Data Collection, Bicycle Flow.  19 
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INTRODUCTION  1 

Bicycle data, in particular cyclist counts at a set of locations (intersections, bicycle facilities, etc.), 2 

is an important piece of information for both practitioners and researchers in transportation. For 3 

instance, this type of information is typically required for road safety studies to generate exposure 4 

measures or safety performance functions (1). In addition, during the planning and design stage, 5 

bicycle counts are necessary to estimate bicycle activity (ridership) and infrastructure needs. 6 

Counts are also required to quantify ridership growth over time after interventions (2). In fact, in a 7 

recent research review published by the group Active Living Research on bicycle counting 8 

technologies and the state of cycling research, it was remarked that some governments are even 9 

beginning to consider bicycle count data when allocating funds for certain parks and evaluating 10 

potential projects (3). This increased awareness has led to new research efforts to improve how 11 

counting data can be used such as; the development of extrapolation factors to estimate long-term 12 

trends based on short-term data. Data collection is not always an easy task because it can be time 13 

consuming and costly, particularly when counts have to be collected for a large sample of sites or 14 

when counts have to be taken over long periods of time. Several data collection methods have been 15 

used in an effort to increase spatial and temporal coverage. Short-term counting over a large set of 16 

locations in a timeframe of hours is a typical data collection strategy that is combined with 17 

long-term count data coming from permanent stations. That is, municipalities and cities are 18 

increasingly adopting strategies which involve obtaining short-term counts over large areas while 19 

at the same time having a large temporal coverage with permanent counting stations. From this, 20 

one can classify counting methods in long-term and short-term durations, where long-term 21 

counting efforts can vary from a few months to many years (long-temporal coverage) and 22 

short-term counting  typically take place over a few hours during a single day (e.g., 2-8 hours of 23 

counting) and involve many sites (large-spatial coverage) (4). 24 

Count data collection methods can be automatic or manual. Automatic counts are often 25 

derived from technologies such as loop detectors, infrared sensors, pneumatic tubes, video 26 

recordings, etc. Manual counts can be obtained directly in the field or they can be obtained by 27 

manually processing video data. Although there are many technologies available for long-term 28 

automatic counting, little research has been conducted regarding automatic count data collection at 29 

intersections and wide roadway sections. Pneumatic tubes or loop detectors are not designed to 30 

count in open spaces or at intersections. These traditional technologies can also fail to accurately 31 

collect data in very wide roadway sections (with several road lanes) in which under-passing 32 

problems occur and vehicular traffic intensity is high. In addition, given the installation, 33 

maintenance and acquisition costs for the equipment involved, these techniques are not very 34 

practical for short-term data collection campaigns. Recently, video-based short-term data 35 

collection methods have emerged through research and private efforts; one can refer for instance to 36 

the technologies offered by a company named MioVision. However, their video-processing 37 

methods have not been well documented making it difficult to judge whether or not a fully 38 

automated method is used. While video counting does offer a number of important advantages 39 

such as low cost, multiple variable data collection, and non-intrusive installation, its use is 40 

generally limited to good lighting conditions and low intensity traffic. It performs well in counting 41 

objects, but work on determining how to categorize those objects is relatively new and untested.  42 

Most video counting methods also tend to require large amounts of calibration data.    43 

This paper presents and evaluates an automated video-based method for counting 44 

bicycles in different environments such as intersections and wide road segments. This method 45 

consists of three different elements: mobile video-camera-mast hardware, moving road user 46 

detection and tracking techniques, and classification-counting algorithms. This method offers a 47 
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large degree of flexibility because the camera-sensor can be installed on existing infrastructure 1 

which enables one to collect data in places where traditional technologies cannot be implemented 2 

or do not typically work well. In addition to all of the mentioned advantages, trajectory data 3 

gathered through this method can be used for other purposes, such as behaviour and road safety 4 

studies. 5 

 6 

LITERATURE REVIEW 7 

Cyclists may be counted in a variety of ways, depending on their movements and the temporal data 8 

requirements. The technologies and methods will depend on the type of counting specified by the 9 

researchers.  10 

 11 

Technologies to Count Cyclists 12 

There is an ever increasing need to develop and test pedestrian and cyclist counting techniques in 13 

order to better understand their importance in the urban transportation field (3). Some of the most 14 

common techniques include on-site manual counting, manual video analysis, automated video 15 

analysis, active and passive infrared counting, inductive loops, and pneumatic tubes. In a research 16 

review on counting methods, Ryan and Lindsey (3) remarked that while manual counting methods 17 

have an accuracy rate ranging from 75 % to 99 %, it is an expensive technique that cannot 18 

practically serve as a solution for long-term counting. The authors found that results from infrared 19 

technology can provide anywhere from 5 % to 50 % error primarily due to object clustering. It was 20 

also noted that most studies tend to indicate that the accuracy of count data is higher at roadway 21 

and sidewalk segments compared to intersections primarily because of the high number of turning 22 

movements. 23 

 Nordback and Janson (5)tested the long-term accuracy of inductive loop detectors 24 

installed in 1998 on multi-use paths for cyclists by comparing automated results with manual 25 

counts. The 1.5 to 1.75 hour long manual counting sessions took place over 6 days in March of 26 

2009 in the City of Boulder, Colorado and were conducted with two observers performing manual 27 

counts over 15 minute intervals in order to ensure the quality of the data. The results of the study 28 

indicated that the loop detectors typically under-detected cyclists by an average of 4 %. Of the 22 29 

out of 24 detector channels or loops abled to be analyzed, 68 % of the channels were found to be 30 

accurate where an accurate channel was defined as a channel having an absolute percent difference 31 

of less than 15 %. The authors attributed a large majority of these errors to detector setting errors 32 

which could be caused by such things as improper installation and paving of the road. It is also 33 

interesting to note that the study found a 6 % average absolute difference with a 6 % standard 34 

deviation between the separate manual counts. 35 

Hyde-Wright et al. (6) compared the accuracy of pneumatic tubes designed specifically 36 

for cyclists and pneumatic tubes designed to count cyclists and motor vehicles. The study used 37 

three general purpose counters (GPC) from MetroCount and one bicycle-specific counter (BSC) 38 

from Eco-Counter. The readings from the tubes were compared to over 2,000 manual counts 39 

collected over 17.25 hours. The study found that the one BSC was between 94 % to 95 % accurate 40 

up to a distance of 27 feet (8.23 meters) away from the counter, but only around 57 % accurate for 41 

a distance between 27 feet and 33 feet (10.06 meters). The best GPC had a high accuracy around 42 

95 % for only up to a distance of 4 feet (1.22 meters). The accuracy from 4 feet to 27 feet and 27 43 

feet to 33 feet were roughly 55 % and 60 %, respectively. 44 

Brewer et al. (7) tested the counting accuracy along with other characteristics such as ease 45 

of installation of three pedestrian and cyclist counters. The study was conducted at three sites over 46 

4 hour long study periods. Ground truth data was established through manual video-based 47 



Zangenehpour, Romancyshyn, Miranda-Moreno, Saunier   5 

 

analysis. The overall error rate of the best tested sensor in this study for counting cyclists, reported 1 

to be 26 %. 2 

 3 

Methods for Video-based Counting 4 

According to a report by Ryan and Lindsey (3), one can see that although many of the traditional 5 

methods perform reasonably well in terms of accuracy and cost, it is clear that automated video 6 

analysis offers the most in regards to the data types it can generate such as speed, volume, and 7 

trajectory. Two other important advantages are that they do not require any physical alteration to 8 

the road surface as other sensors do, in particular inductive loops, and they are more discreet.  9 

The three fundamental tasks of all video tracking systems are to detect, track and classify 10 

the type of objects (8). However, when these systems were first introduced, similar to a loop 11 

detector, it just collected basic vehicle data such as speed and volumes, at specific points on the 12 

road without tracking them (9). These systems known as ‘tripwire systems’ essentially look at 13 

specific points along a road segment and count whenever the image intensity changed. Newer 14 

systems also track vehicles and provide engineers with microscopic data for individual vehicles 15 

such as acceleration and deceleration patterns (10). The primary issues of detecting and tracking 16 

vehicles or any other road user are related to visibility, or lack thereof due to poor weather and 17 

lighting conditions, congested traffic, occlusion of complete or partial vehicle segments, and 18 

vehicle shadows (9). In particular, for congested conditions and instances where the sun creates 19 

vehicle shadows, most systems have issues with identifying individual vehicles and often group 20 

several vehicles with their shadows into large masses. These issues are even more prevalent for 21 

pedestrian and cyclist tracking systems because of user variability in both appearance and 22 

movement (11). 23 

Other imaging technologies have also been developed and tested. One promising solution 24 

in the cases of poor lighting and shadows is the use of infrared thermal imaging, particularly for 25 

monitoring traffic nighttime conditions (12, 13). The contrast between the typically low thermal 26 

background signature of the road and high thermal foreground signature of the vehicle makes it 27 

easier to identify moving vehicles especially in bad weather conditions. However, this contrast is 28 

heavily dependent on weather and temperature conditions, with worse performance in warm 29 

weather. Although infrared technology has already been extensively used for military purposes 30 

such as weapon guidance systems, it is yet to gain prominence in the field of traffic monitoring. 31 

The four main tracking techniques are model-based, region-based, active contour-based, 32 

and feature-based tracking (9). Model-based tracking functions by matching an approximate 33 

model, typically a wire-frame model, to the detected road user shapes through proper scaling and 34 

orientation (14). The second tracking technique, region-based tracking, works by identifying road 35 

users pixel groups often called blobs typically using background subtraction. This technique works 36 

well when few road users are present on the road. However, in situations of congestion, road users 37 

too close to each other may be accidentally grouped together and tracked as a single large object. 38 

Similarly to the previous method, active contour-based tracking identifies road users by their 39 

borders or contours. Although it is computationally less intensive than region-based tracking, it 40 

suffers from the same issue of occlusion. In these first three techniques, the road user detection 41 

(characterized by 3D model, shape or contour) is then updated using a specified filtering technique 42 

to estimate its new position based on its velocity and angle. The fourth is feature-based tracking 43 

which essentially works by identifying distinct points or features such as corners to track (9, 15). 44 

The most important advantage of this technique is that vehicles may be tracked even in cases of 45 

partial occlusion (9). It is also advantageous to use in varying lighting conditions because it 46 

focuses on identifying the most obvious features that can be used to identify a vehicle. 47 
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Classification can then be performed on the output to distinguish between vehicles, pedestrians 1 

and cyclists such as in the case of intersections with mixed traffic (11). 2 

Among the few more recent studies evaluating the counting performance of video 3 

analysis, Zaki et al. (16) focused on collecting cyclist count and speed data from a single 4 

roundabout located at one of the entrances to the University of British Columbia campus using an 5 

automated computer vision technique. The study consisted of two twelve hour recordings taking 6 

place over two consecutive days in March 2011. In regards to counting, the results of the study 7 

were found to be over 84 % accurate when compared to a manual video analysis. It was noted that 8 

the accuracy of counts depended on the camera position relative to the four screen line positions 9 

evaluated. Similarly, Somasundaram et al. (17) presented a number of computer vision methods or 10 

classifiers to deal with the issue of classifying objects as pedestrians or cyclists. Some of the 11 

methods included were individual in nature such as, bag-of-visual-words (BoVW), bag of salient 12 

words, and classification with discriminative dictionaries while others were simply a combination 13 

of individual approaches such as a combined naïve Bayes method and a combined histogram 14 

method. The study tested the different techniques along with other techniques described in the 15 

literature on two video sets which featured a cycling path with a high percentage of cyclists and a 16 

university walkway with a high percentage of pedestrians in Minneapolis. The results found that 17 

the combined approach described in the paper produced the most accurate results in regards to 18 

frame-by-frame classification (92 %) and counting (95 %). A study by Belbachir et al. (18) focused 19 

on testing an event-based 3D vision system to classify 128 test trips along a path designated for 20 

pedestrians and cyclists only. The system functioned by first clustering similar objects and then 21 

classifying them based on length, width, and time. The results of the study indicate that the system 22 

was more than 92 % accurate in classifying an object as a riding cyclist, walking cyclist or 23 

pedestrian. The most important shortcoming of the most previous works was reporting the 24 

accuracy of the counting for the entire period. Accuracy reported for long periods of time can be 25 

subject to uncertainty and randomness as over-counting and under-counting errors in shorter time 26 

periods do not always compensate the effect of each other. 27 

 28 

METHODOLOGY 29 

This section describes the proposed methodology for the automated bicycle counting technique 30 

that consists of three steps: 31 

1. Site selection and video collection 32 

2. Data processing 33 

3. Assessing counting accuracy 34 

 35 

Site Selection and Video Collection 36 

For investigating the bicycle counting accuracy of the proposed method, a set of sites with 37 

different environment types and volume intensities were selected in Montreal. The sites consisted 38 

of intersections and road segments with or without cycle tracks.  In each site, several hours of 39 

video were recorded: 40 

- Two road segments with separated cycle tracks (7 hours) 41 

- Five intersections with separated cycle tracks (14 hours) 42 

- Three road segments without a cycle track (6.5 hours) 43 

- Three intersections without a cycle track (8.5 hours) 44 

All the videos were recorded during the weekday and afternoon peak hours in the summer 45 

in order to ensure significant count variability. In addition, videos were collected in good weather 46 
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conditions, since issues related to bad weather were not the focus of this paper. Figure 1 shows the 1 

locations of the selected sites. 2 

 3 

 4 
Figure 1. Location of sites selected for recording video in Montreal. 5 

 6 

For the video data collection, GoPro’s Hero 3+ Black Edition cameras were used to record 7 

video in high definition (HD) at 15 frames per second. With each single charge of the camera, 8 

around 3.5 hours of video could be recorded. These cameras were mounted on tall adjustable poles 9 

which were then installed next to an existing pole at an intersection to support and provide stability 10 

for the pole in order to prevent the camera view from changing throughout the video. The camera 11 

angle was adjusted for each site in order to optimize the viewing of the site. Depending on the 12 

width of the road, the location of an appropriate pole as well as other obstacles, the camera setup 13 

differed for each site. 14 

 15 

Data Processing 16 

Data processing involves three steps: detecting and tracking moving objects in the video, 17 

classifying the tracked objects into road users of different types (pedestrian, cyclist or vehicle), and 18 

selecting the trajectories associated with the road users subject to count (cyclists in each direction).  19 

 20 

Tracking Objects in Video 21 

An existing feature-based tracking tool from an open-source project called Traffic 22 

Intelligence (19) was used for detecting and tracking the objects in a video. The proposed approach 23 

uses the output of the moving object tracker (20). This algorithm can be summarized in two steps: 24 
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1. Individual pixels are detected and tracked from frame to frame and recorded as feature 1 

trajectories using the Kanade Lucas Tomasi feature tracking algorithm (21).  2 

2. A moving object is composed of many features which must be grouped. Feature 3 

trajectories are grouped based on consistent common motion. In other words, features that 4 

have relatively the same movements will be grouped together to form an object. 5 

The tracker output is a set of trajectories (sequences of object positions at each frame) of each 6 

moving object in a video. The parameters of this algorithm are calibrated through trial and error, 7 

leading to a trade-off between over-segmentation (one object being tracked as many) and 8 

over-grouping (many objects tracked as one). Readers are referred to (20) for more details. 9 

 10 

Object Classification 11 

At intersections with several different road user types, object classification is needed, especially 12 

when the subject of study is the interaction between two different road user types. In this paper, a 13 

modification of previously developed method for object classification in video (11) was used. 14 

Classification is done based on the object appearance in each frame combined with its aggregated 15 

speed and speed frequency (or gait parameters). The overall accuracy of this classification method 16 

at intersections with high volumes and mixed road user traffic is more than 90 %. The classifier is 17 

capable of classifying objects into three main road user types: pedestrian, cyclist, and motor 18 

vehicle. For more details regarding the original classification method, readers are referred to (11).  19 

 20 

Selecting What is Counted 21 

The next required step was to define what is counted, i.e. for which pairs of origin and destination 22 

zones the cyclists were counted. This step was done by defining seperate origin and destination 23 

areas for cyclists, for each movement, in a video. Since it is possible that an object trajectory 24 

appears or disappears somewhere in the middle of the camera view (if it stops and then starts 25 

moving, or as a result of problems with the quality of the video), five areas for origins and 26 

destinations were defined (instead of just one origin and one destination). This increased the 27 

chance of a cyclist being detected and counted. Origins and destinations were defined in a way to 28 

count specific movements of cyclists. By changing the position, shape or size of these areas, one 29 

can count the cyclists of another movement. A trajectory was counted as a cyclist if:  30 

1- the moving object was classified as a cyclist 31 

2- it passed through one of the origin areas defined for each movement 32 

3- after it passed through one of the origin areas, it passed through one of the destination areas 33 

defined for that movement. 34 

For example in Figure 2, to be counted as a cyclist in the movements indicated by the red arrows, a 35 

cyclist had to first appear in one of the yellow areas (origin) and then appear in another yellow area 36 

with a higher number (destination). Even if a cyclists passed through multiple origins and 37 

destinations it was counted as one cyclist. Figure 2a shows an intersection with two directions 38 

subject to counting (counting in the direction of movement represented by the green arrow is 39 

different from the opposite direction only for considering destination areas with lower numbers 40 

than origin areas), while Figure 2b shows another intersection with only one direction subject to 41 

counting, since the origin of the other movement is not visible in the camera’s field of view.  42 
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 1 
Figure 2. Examples of origins and destinations for (a) an intersection with two directions for counting, and 2 

(b) an intersection with only one direction for counting. 3 

 4 

Samples of the density maps derived from the trajectories extracted and filtered by this 5 

algorithm are shown in Figure 3. These heat-maps are useful to see the most used locations of the 6 

map by the counted cyclists.  7 

 8 

 9 
Figure 3. Densities of the positions of the counted cyclists for different environments (the most and least 10 

used map locations are respectively red and blue; heat-map colours range from blue to red, passing through 11 

cyan, yellow, and orange): (a) road segment with a cycle track, (b) intersection with a cycle track, (c) road 12 

segment without a cycle track, and (d) intersection without a cycle.  13 

                   
                                       (a)                                                                                 (b) 

 

                 
                                       (a)                                                                                 (b) 

                
                                       (c)                                                                                (d) 
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Measuring Counting Accuracy 1 

Sources of error in the proposed automated counting method can be grouped into four main 2 

categories: 3 

o Not being tracked: this error mostly happens when the quality of the recorded videos is not 4 

high enough and the tracker cannot track the moving features in the video. The other cause 5 

of this error is cyclists being occluded in the video by a larger vehicle. 6 

o One object being grouped to two or more objects by the tracker: this type of error happens 7 

when the features of one object are far from each other and move relative to each other.  8 

o Two or more objects group into one object by the tracker: this type of error is more common 9 

in situations where a lot of cyclists arrive in the video and move together. 10 

o Misclassification: this type of error is more common in environments with mixed traffic, 11 

like intersections which have mixed high volume traffic. 12 

To test both the accuracy and precision of the proposed automatic bicycle counting method, four 13 

measures are computed: the R squared of the best linear fit, the Root Mean Square Deviation 14 

(RMSD), the Mean Absolute Percentage Deviation (MAPD), and the Standard Deviation of 15 

Percentage Deviations (SDPD). 16 

RMSD, a frequently used measure of accuracy, is the difference between predicted values 17 

and the actual observed values. RMSD can be computed as: 18 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ (𝐴𝐶𝑡 −𝑀𝐶𝑡)

2
𝑛

𝑡=1
 19 

Where, ACt stands for the automatic counts for each time interval, t. MCt stands for the 20 

manual counts during the same time interval, n stands for the number of time intervals.  21 

MAPD is a relative measure of accuracy and is defined by this formula: 22 

𝑀𝐴𝑃𝐷 =
1

𝑛
∑ |

𝐴𝐶𝑡 −𝑀𝐶𝑡
𝑀𝐶𝑡

|
𝑛

𝑡=1
 23 

SDPD is the standard deviation of MAPD and can be calculated as: 24 

𝑆𝐷𝑃𝐷 = √
1

𝑛 − 1
∑ [(

𝐴𝐶𝑡 −𝑀𝐶𝑡
𝑀𝐶𝑡

) − 𝑀𝐴𝑃𝐷]
2𝑛

𝑡=1
 25 

 26 

RESULTS 27 

The proposed automated counting method was applied to the selected sites and compared to the 28 

manual counts from the videos. From the selected sites, the views at five sites were not adequate 29 

enough to count bicycle flows traveling in both directions (either because of the high fish eye 30 

effect of the camera at the edges of the field of view or because the counting area was not fully in 31 

view, e.g. the origin or destination area was not visible). In such cases, the automated counts were 32 

obtained only for one direction (Figure 2). 33 

On average, the number of cyclists was higher on road segments and intersections with 34 

cycle tracks. Cyclist flow per direction range from as low as 8 cyclists on average per hour where 35 

there was no cycle track to as high as 464 cyclists on average per hour where there was a cycle 36 

track (see Table 1). A simple, but naïve way to show the overall accuracy of the automated 37 

counting method is to find the ratio of the overall counts done by automated method to the overall 38 

manual counts. Based on this measure, automated counts to manual counts ratios ranged from 0.73 39 

to 1.04 for different environment types. A summary of the analyzed videos, flows, and aggregated 40 

automated to manual count ratio results are shown in Table 1. 41 
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Table 1. Summary of the analyzed videos for bicycle counts and aggregated performance 1 

Environment type Site Hour 
Travel 

Direction 

Manual 

bicycle 

count 

Automated 

bicycle 

count 

Manual 

bicycle count 

per hour 

Automated 

bicycle count 

per hour 

Automated 

to Manual 

Ratio 

Road segment with 

cycle track 

Cote Sainte Catherine/ Claude 

Champagne (at Bus Stop) 
5.28 

East 599 587 113 111 0.98 

West 612 563 116 107 0.92 

Rachel / Messier (at Bus Stop) 1.75 
West 533 530 305 303 0.99 

East 145 148 83 85 1.02 

Intersection with 

cycle track 

Berri / Maisonneuve 1.21 
South 170 130 140 107 0.76 

North 561 487 464 402 0.87 

Cote Sainte Catherine / 

Claude Champagne 
3.5 

East 182 164 52 47 0.90 

West 489 433 140 124 0.89 

Cote Sainte Catherine / 

Pagnuelo 
3.95 

East 235 204 59 52 0.87 

West 287 266 73 67 0.93 

Maisonneuve / Crescent 3.5 
West 1083 901 309 257 0.83 

East 772 674 221 193 0.87 

Maisonneuve / Union 1.8 
West 393 404 218 224 1.03 

East 521 468 289 260 0.90 

Road segment 

without cycle track 

Ontario / Bullion 3.44 East 714 703 208 204 0.98 

Sherbrooke / Metcalfe 1.05 East 129 134 123 128 1.04 

Cote Sainte Catherine /  

Cote Des Neiges 
2.06 East 16 14 8 7 0.88 

Intersection 

without cycle track 

Mont Royal / Lorimier 2.88 West 116 109 40 38 0.94 

Mont Royal / Saint Laurent 2.71 
East 115 119 42 44 1.03 

West 73 53 27 20 0.73 

Saint Denis / Rene Levesque 3 West 81 69 27 23 0.85 

Road segments 

with cycle track  
7.03 

 
1889 1828 269 260 0.97 

Intersections with 

cycle track  
13.96 

 
4693 4131 336 296 0.88 

Road segments 

without cycle track  
6.55 

 
859 837 131 128 0.97 

Intersections 

without cycle track  
8.59 

 
385 364 45 42 0.95 
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To visually evaluate the quality of the proposed automatic counting method and explore 1 

the effect of the temporal aggregation, x-y plots between automatic and manual counts were 2 

generated at 5 and 15 minutes intervals. In the following Figures 4-7 points corresponding to 3 

counting accuracy for 5 and 15 minutes intervals pooled for different environments are shown. 4 

Each figure shows the automated counts versus manual counts for all the sites and directions in 5 

that category. In these figures, the dashed red line shows the ideal counts: “y=x” or “manual 6 

counting = automated counting” and the blue line represents the best linear fit. R2 which is a 7 

measure for precision is also shown for each figure. 8 

 9 

 10 

  
                                               (a)                                                                                          (b) 

                     

                                               (c)                                                                                          (d) 

 
Figure 4. Bicycle counting accuracy for road segments with a cycle track. (a) for 5 minutes intervals, and (b) for 15 

minutes intervals. (c, d) show the field of views of the corresponding sites. 
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 1 

  
                                               (a)                                                                                          (b) 

   

                            (c)                                                            (d)                                                          (e) 

  

                                                         (f)                                                                 (g) 

Figure 5. Bicycle counting accuracy for intersections with a cycle track. (a) for 5 minutes intervals, and (b) for 15 minutes 

intervals. (c, d, e, f, g) show the field of views of the corresponding sites. 
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                                                     (c)                                                                         (d) 
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Figure 6. Bicycle counting accuracy for road segments with no cycle track. (a) for 5 minutes intervals, and (b) for 15 

minutes intervals. (c, d, e) show the field of views of the corresponding sites. 
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                                                     (c)                                                                        (d) 

                         

(e) 

Figure 7. Bicycle counting accuracy for intersections with no cycle track. (a) for 5 minutes intervals, and (b) for 15 

minutes intervals. (c, d, e) show the field of views of the corresponding sites. 
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Table 2. Statistical tests on automated counting accuracy 1 

Environment 

Type 

Counting 

Interval 

(minutes) 

Average 

Flow 

Linear 

Coefficient, 

a*  

Linear 

Constant, 

b*  

Linear 

R2 RMSD MAPD SDPD 

Road segments 

with cycle track 

5 11.3 0.96 0.09 0.97 1.59 10 % 4 % 

15 33.8 0.97 0.08 0.99 3.10 7 % 0.3 % 

Intersections 

with cycle track 

5 15.0 0.81 1.01 0.94 3.92 17 % 3 % 

15 44.3 0.83 2.56 0.97 9.33 12 % 1 % 

Road segments 

without cycle 

track 

5 12.3 0.93 0.73 0.95 2.40 13 % 5 % 

15 40.8 0.93 2.21 0.98 4.77 11 % 4 % 

Intersections 

without cycle 

track 

5 3.1 0.80 0.33 0.55 1.47 37 % 18 % 

15 9.4 0.78 1.44 0.68 2.32 19 % 2 % 

* in “Manual Count = a * Automated Count + b” 

 2 

Table 2 shows the acceptable performance of the proposed methodology for counting 3 

bicycle flows in different environments. Based on the MAPD, for 5 minutes interval counts, the 4 

accuracy ranged from 73 % for intersections without a cycle track to 90 % for road segments with 5 

a cycle track. With the same measure, for 15 minutes interval counts, the accuracy ranged from 81 6 

% for intersections without a cycle track to 93 % for road segments with a cycle track. RMSD 7 

describes the absolute error value for each type of environment, meaning that the value given by 8 

the automated method has the absolute average error of RMSD. Since this is not a normalized 9 

value, RMSD tended to be higher for situations with a higher number of cyclists, like intersections 10 

with a cycle track. Regarding the time interval of the counts, due to the possibility of 11 

under-counting in one time interval being compensated by over-counting in another, the accuracy 12 

of the counts was higher for the longer time intervals (15-min vs 5-min).  13 

Due to the usage of the modified classifier from the movements and positions of each 14 

object in the video (by defining the areas that each road user can be present in), the counting 15 

accuracy was higher for roads and intersections with separated bicycle flow (with cycle track) 16 

compared to those with mixed traffic (without cycle track). Similarly, due to less mixed 17 

movements at road segments (and fewer pedestrians) the counting accuracy was higher than for 18 

intersections. The only source of error for road segments with a cycle track was misclassification 19 

of the pedestrians who had to cross the cycle track to get on a bus (or get off) at bus stop. Due to the 20 

strong capability of the modified classifier to distinguish pedestrians from cyclists, the counting 21 

accuracy for road segments with separated cycle tracks was very high (Figure 4). The main source 22 

of error in the videos of intersections with a cycle track was the camera angle which could have 23 

caused cyclists to be occluded by larger vehicles and partially or completely hidden in the video. 24 

Another source of error was the high amount of road user interactions at intersections and cyclists 25 

stopping at intersections which can cause disruptions in the tracking (Figure 5). In road segments 26 

and intersections without a cycle track, the classifier might have misclassified road user types 27 

(Figure 6 and Figure 7). Examples of this misclassification include a vehicle or a pedestrian 28 

classified as a cyclist (over-counting) or a cyclist classified as a vehicle or a pedestrian 29 

(under-counting). 30 

 31 

 32 
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CONCLUSION 1 

In this paper, an automatic method for counting cyclists at road segments and intersections was 2 

proposed. The results indicate that this method can be a feasible and highly accurate technique for 3 

gathering short-term bicycle counts in locations where traditional technologies such as loop 4 

detectors and pneumatic tubes, do not work well. The proposed method consists of several steps: 5 

recording video, tracking and classifying objects in the video, and defining origins and 6 

destinations for movements subject to counting. 7 

One of the main advantages of this method is its ability to count cyclist flow for different 8 

movements with different origins and destinations, even in complex environments with mixed 9 

traffic such as intersections. In addition, the cyclists trajectories derived from this method for 10 

different movements can be used for other purposes such as road safety studies (22). 11 

 One of the shortcomings of most previous works was reporting the accuracy of counting 12 

cyclists for the entire period of the data collection. Because over-counting and under-counting 13 

errors in shorter time periods cannot always compensate the effect of each other, accuracy reported 14 

for longer periods of time can be subject to uncertainty and randomness. Due to this reason, the 15 

accuracy of the proposed method was reported for two short time intervals of 5 and 15 minutes. 16 

Using MAPD as an accuracy measure, road segments with cycle tracks had the least error (10 % 17 

for 5 minutes intervals and 7 % for 15 minutes interval). Road segments without a cycle track had 18 

the second best accuracy, 13 % and 11 % error for 5 and 15 minutes intervals respectively. Due to 19 

the complex movements at intersections, the accuracy for bicycle counts at intersections was 20 

relatively lower compared to road segments. 17 % and 12 % were the errors associated for 21 

intersections with a cycle track respectively for 5 and 15 minutes intervals, while 37 % and 19 % 22 

were the errors associated for intersections without cycle track respectively for 5 and 15 minutes 23 

intervals. 24 

 Several factors can cause the proposed method to be inaccurate such as a bad camera 25 

angle in a way that cyclists being occluded by larger vehicles, high distance between camera and 26 

cyclists subject to count, bad weather conditions, presence of shadow, and movements of two or 27 

more cyclists next to each other. These factors can affect the accuracy of counting cyclists in 28 

different environments, making counting in road segments with a cycle track and at intersections 29 

without a cycle track the best and worst environments for which to accurately count cyclists. 30 

 In regards to future developments, one can improve the accuracy of the used tracker and 31 

classifier to reduce the error in tracking, grouping, and classifying moving objects in a video. 32 

Alternative video sensors can also be used such as thermal cameras, to deal with some of the 33 

limitations of the regular cameras in low light, shade, and adverse weather conditions. Changing 34 

the camera angle by using a taller pole or mounting the camera to a drone can mitigate the problem 35 

with occlusion in high density conditions. In addition, installing multiple cameras at intersections 36 

to capture all the possible movements, origins and destinations, can be a useful addition to the 37 

current method.  38 
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