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ABSTRACT 1 

Pedestrians and cyclists are vulnerable road users and despite their limited presence in traffic events, these 2 

two groups have the most collisions resulting in injuries and fatalities. Due to problems regarding data 3 

collection for pedestrians and cyclists, there is a shortcoming in the field of road safety with regards to the 4 

availability and quality of data for non-motorized modes. Also, due to the constant change of orientation 5 

and appearance of pedestrians and cyclists, detecting and tracking them is a hard task. This is one of the 6 

reasons why automated data collection methods have mainly been developed to detect and track motorized 7 

traffic. This paper presents a methodology based on Histogram of Oriented Gradients to extract features of 8 

an image box containing the tracked object and Support Vector Machine as a classifier, to classify moving 9 

objects in crowded traffic scenes. This method classifies moving objects into three main types of road users: 10 

pedestrians, cyclists, and motor vehicles. This is done by first tracking each moving object in the video, 11 

classifying its appearance in each frame and then computing the probability of belonging to each class 12 

based on its appearance and speed. Bayes’ rule is used to fuse appearance and speed to predict the class for 13 

each object. Testing results show good performance, with an overall accuracy of more than 90 %.  14 



Zangenehpour, Miranda-Moreno, & Saunier 3 

INTRODUCTION 1 

With the increase in computing power and capacity of sensors coupled with their decreasing price, the field 2 

of Intelligent Transportation System (ITS) has seen considerable improvements in automatic traffic 3 

monitoring systems. The aim is not only to collect macroscopic traffic data, e.g. flow, density and average 4 

speed at specific locations in the road network, but also detailed microscopic information about each road 5 

user (position and speed) continuously and over large areas of the network. A great amount of the workload 6 

of traffic monitoring will thus shift from human operators to these automated systems with improved 7 

performance and the possibility to perform new tasks such as road safety monitoring (1). 8 

Intersections are critical elements of the road network for safety given that a high concentration of 9 

conflicts, crashes and injuries occurs at these locations. With the promotion and increase of non-motorized 10 

transportation in North American cities, the safety of non-motorized users at intersections has gained a lot 11 

of attention. In cities like Montreal, 60 % of pedestrian and cyclist injuries occur at intersections (2). Given 12 

the importance of this topic in research and practice, several recent studies have looked at different safety 13 

issues at intersections using traditional approaches based on historical crash data (3) and surrogate 14 

approaches such as conflict analysis (4). Independent of the method for road safety diagnosis, obtaining 15 

macroscopic and microscopic traffic data is fundamental. In the traditional approach, exposure measures 16 

are often developed based on traffic counts of each user type (e.g., vehicular, pedestrian and bicycle 17 

volumes). In the surrogate approach, road user trajectories are necessary to compute typical measures such 18 

as Time To Collision (TTC), Post Encroachment Time (PET), and gap time (5). 19 

Road users can be detected and classified using a variety of sensors like inductive-loops, magnetic 20 

sensors, microwave and laser radars, infrared and ultrasonic sensors (6). However, it seems that the most 21 

convenient way to obtain data, such as road user trajectories, over a certain area is through the use of video 22 

sensors. Video sensors have several advantages, in particular the ability to capture naturalistic movements 23 

of road users with a small risk of catching their attention, the relative ease of installation, the richness of 24 

extracted data and the relatively low cost (7). Their weaknesses are caused by low light conditions, adverse 25 

weather, and occlusion in high traffic conditions. 26 

Automated video analysis involves the use of computer vision techniques to overcome many of the 27 

shortcomings associated with manual field observations and manual video analysis (8). Tracking and 28 

collecting observational data for cyclists and pedestrians is more difficult than for vehicles because of their 29 

non-rigidity, their more varied appearances and less organized movements. In addition, they often move in 30 

groups close to each other which make them even harder to detect and track.  31 

There are two approaches to extract classified road user trajectories from video: either tracking all 32 

moving objects and then classifying them in several categories of road users, or detecting road users in the 33 

successive video frames and connecting the detections (i.e. tracking by detection (9)). Trackers with 34 

reasonable performance are available in the transportation field (10)(11), including the open source project 35 

Traffic Intelligence (https://bitbucket.org/Nicolas/trafficintelligence/). However, classification algorithms 36 

of user trajectories are less popular and missing in current available software such as Traffic Intelligence. 37 

Classification is therefore performed after tracking, on the resulting tracked road user trajectories. 38 

The objective of this paper is to develop and evaluate classifiers for at least three types of road users, 39 

in this case motor vehicles, cyclists and pedestrians, based on their speed and appearance in video. Five 40 

classifiers are designed to classify the tracked road users. The first classifier relies only on the speed of the 41 

tracked object to predict its type, while the second classifier uses only the appearance of each object in the 42 

video for classification. The third classifier combines speed with the object appearance through speed 43 

thresholds while the fourth classifier relies on Bayes’ rule to fuse speed and appearance. Finally, the fifth 44 

classifier uses another probability-based combination of object speed and appearance.  45 

The main contribution of this paper is the development of a method for the classification of different 46 

road users in crowded urban traffic scenes. Previous studies classified road users either in only two classes 47 

(12), or in more classes in less complex environments such as highways where there are minor changes in 48 

the appearance of vehicles (13). The classifiers designed in this paper classify tracked road users into three 49 

main road user types: pedestrian, cyclist and motor vehicle. The signalized intersection of Avenue des Pins 50 

https://bitbucket.org/Nicolas/trafficintelligence/
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and Rue Saint-Urbain in Montreal was selected during peak hours to test the method in a crowded traffic 1 

scene to compare the performance of the five classification algorithms. A final contribution is the release 2 

of the classifier code and the code used to produce the results presented in this paper.  3 

The paper is organized as follows: first a review of previous work on the subject of tracking and 4 

classification of road users is provided. This is followed by a description of the developed system. The 5 

paper then presents and discusses the performance of the proposed classifiers, the results and finally the 6 

conclusions are drawn from the entire study. 7 

BACKGROUND 8 

The readers are referred to (14) for a general survey of object tracking. In (15), the different approaches for 9 

the detection and tracking of road users are classified into: 10 

1. Tracking by detection: in many cases, especially if the objects are well separated, this approach 11 

works well. Detection of objects is done using background modeling and subtraction with the 12 

current image (16) or deformable templates, i.e. a model of image appearance using color 13 

distribution, edge characteristics or texture (17). Image classifiers can be trained on labeled data 14 

to detect road users (18)(19). 15 

2. Tracking using flow: when a deformable template specifying the appearance of an object is 16 

available, pixels in successive images can be matched. This approach is also called feature-based 17 

tracking and has been applied to traffic monitoring in (10). 18 

3. Tracking with probability: it is convenient to see tracking as a probabilistic inference problem in 19 

a Bayesian tracking framework. In simple cases, independent Kalman filters can be run 20 

successfully for each target (20), but this approach will fail in scenes where the objects interact 21 

and occlude each other. This is called the data association problem and can be solved using 22 

particle filters and Markov chain Monte Carlo methods for sampling. 23 

Although significant progress has been made in recent years, tracking performance is difficult to 24 

report and compare, especially when the systems are not publically available, and when benchmarks are 25 

rare and not systematically used.  26 

Similarly to object detection and tracking, significant progress in object classification for images has 27 

been made over the recent years, but generic multi-class object classification is still a very challenging task. 28 

Most of the research boils down to the design and extraction of the best features or variables to describe the 29 

objects in the images. There are two main classes of description variables: 30 

1. Variables describing the appearance of the object, i.e. the pixels. New features have been 31 

successfully developed, in particular being invariant to various image transformations like 32 

translation, rotation and scaling. Among them are the Histogram of Oriented Gradients features 33 

(HOG) (19), Scale-Invariant Feature Transform features (SIFT) (21), Speeded Up Robust 34 

Features (SURF) (22), DAISY (23), Local Binary Patterns (LBP) (24) and Fast Retina Keypoint 35 

(FREAK) (25). 36 

2. Variables describing the shape or contour of the object. A good overview can be found in (26). 37 

The simplest are the area and aspect ratio of the bounding box of the object.  38 

Once object instances are turned into numerical vectors, this becomes a more traditional classification 39 

problem that can be addressed using machine learning or other techniques to learn generative or 40 

discriminative models. A popular state of the art technique is Support Vector Machines (SVM) used for 41 

example in (19). There is also a renewal of interest for nearest-neighbor techniques for object classification 42 

(13)(27).  43 

Road user classification is a useful addition to traffic monitoring systems and efforts have already 44 

been done in this area. An early simple system (28) classifies and then tracks vehicles and humans. The 45 

classification is done using a Mahalanobis-based distance and the correct classification ratio is respectively 46 

86.8 % and 82.8 % for vehicles and humans.  47 

Fitting a 3D model is another way to classify objects in traffic monitoring. Complex 3D models are 48 

used in (29) to classify vehicles into seven classes. The object description includes other visual features 49 

such as brightness and color histograms. A SVM classifier can also be used to differentiate between sub-50 
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classes, such as between bicycles and motorcycles or between buses and trucks. A global detection rate as 1 

high as 92.5 % has been reported, however this value varies for different classes. In (30), in simple highway 2 

settings, using feature-based tracking as well as the number of features making up the object's height, over 3 

90 % of road users were correctly classified. The work presented in (13) extracts the standard description 4 

of blobs by simple morphological measurements and targets real-time traffic monitoring on highways. Its 5 

performance is not clear as it reports results for different confidence levels. Although the work presented 6 

in (31) is called unsupervised by its authors, using k-means, it implicitly relies on prior knowledge of the 7 

road users in the scene. The description variables are the velocity of the object area, the “compactness”, 8 

defined as the ratio of the object area over the square of the object perimeter, the time derivative of the area 9 

and the angle between the motion direction and the direction of the major axis of the shape. It has to be 10 

mentioned that none of these studies focused on busy locations like at intersections with high levels of 11 

cyclist and pedestrian traffic. 12 

The method to count and classify composite objects presented in (12) relies on various descriptors 13 

combined in a Naïve Bayes framework or simply concatenated as inputs to a SVM classifier. The reported 14 

classification accuracy is 92 % and the counting accuracy is 95 %. A follow up on (7) is presented in (32). 15 

After tracking each moving object in video, the type is classified based on speed profile information, like 16 

maximum speed and stride frequency. In this work, a classification accuracy of 94.8 % and 88.6 % are 17 

reported respectively for binary classification of motorized vs. non-motorized road users and for the 18 

classification of three main types of road users. 19 

Finally, an idea common to most of the research presented in this section is the use of multiple 20 

detections provided by a tracking system at each frame. Integrating the instantaneous classification, the 21 

system achieves more robust performance (e.g. see (20) for some quantitative results that illustrate this 22 

point). 23 

METHODOLOGY 24 

The classifiers have to be calibrated or trained before they can be applied to classify road users. These two 25 

steps are shown in Figure 1. In this section, the main elements of the chosen classification method are 26 

described and then the five different classifiers are presented in detail. 27 

Tracker 28 

The proposed approach classifies the output of a generic feature-based moving object tracker (10). This 29 

algorithm can be summarized in two steps: 30 

1. Individual pixels are detected and tracked from frame to frame and recorded as feature trajectories 31 

using the Kanade Lucas Tomasi feature tracking algorithm (33).  32 

2. A moving object is composed of many features which must therefore be grouped. Feature 33 

trajectories are grouped based on consistent common motion. 34 

The parameters of this algorithm are tuned through trial and error, leading to a trade-off between over-35 

segmentation (one object being tracked as many) and over-grouping (many objects tracked as one). Readers 36 

are referred to (10) for more details. 37 

 38 
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 1 
Figure 1. Steps involved in (a) training the classifier and (b) predicting the class of each object 2 

Dataset and Modeling 3 

A dataset containing images for each road user class, pedestrians, cyclists and vehicles, is used to train the 4 

appearance-based classifiers. Using the object trajectory provided by the tracker, the bounding boxes of the 5 

features on each moving object are automatically computed: the region of interest within the bounding box 6 

is saved and then manually classified into three groups: pedestrian, cyclist, and motor vehicle. It is worth 7 

mentioning that: 8 

1. The videos used for extracting training data are different from the video used to test the algorithm 9 

performance. 10 

2. For the training dataset, two different cameras with different resolution and view angle were used 11 

in locations different from where the testing videos were recorded. This implies that the algorithm 12 

does not have a high sensitivity to camera resolution or angle as well as to the site under study as 13 

can be seen in Figure 2a,b. 14 

3. The tracker does not necessarily track the entire object. It is possible that parts of the pedestrian, 15 

cyclist or vehicle are not within the extracted image box. In this case, only part of a pedestrian 16 

body or a wheel or bumper of a vehicle is being tracked. Since this situation will occur also at 17 

prediction time, these object portions are added to training dataset as well (Figure 2c,d). 18 

 
(a) Training the Classifier 

 
(b) Using the Classifier 
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 1 
Figure 2. Sample of extracted road user images used for training and testing 2 

Feature Descriptor 3 

The first element to select in an appearance-based classifier is the description feature or descriptor best 4 

suited to discriminate between road user classes. Among the many image descriptors documented in the 5 

literature, Histogram of Oriented Gradients (HOG) is used as it has been applied with success to object 6 

classification, in particular pedestrian detection in static images (19) and vehicle detection (34). HOG 7 

features concentrate on the contrast of silhouette contours against the background. It works by dividing 8 

each image into cells in which histograms of gradient directions or edge orientations are computed. The 9 

cells making up the image can have different illumination and contrast which can be corrected by 10 

normalization. This is achieved by grouping together adjacent cells into larger connected blocks and 11 

calculating a measure of intensity for these new blocks. The individual cells within the block can then be 12 

normalized based on the larger block. The HOG algorithm used in this work is an open source machine 13 

learning library for Python programming language (available at http://scikit-image.org/). 14 

Feature Classification 15 

The next step is to classify the chosen descriptors into the different road user classes to obtain the base 16 

appearance-based classifier. Supervised learning methods are used for classification tasks where the classes 17 

are known and labeled instances can be obtained (35). In this work, labeled instances are the HOG features 18 

computed over an image sub-region, with their expected label. These labels correspond to the road user 19 

type (vehicle, pedestrian, and cyclist). A training algorithm builds a model of the labeled data that can then 20 

be applied to new, unlabeled input data, to predict their class. Artificial neural networks (36), K-Nearest 21 

Neighbors (KNN) (37) and Support Vector Machine (SVM) (38) are well-known supervised classifiers. 22 

  
     (a) Training video sample, resolution of 800x600            (b) Testing video sample, resolution of 1280x960 

        

(c) Sample of complete objects 

        

(d) Sample of objects which do not include the entire pedestrian/cyclist/vehicle 

 

http://scikit-image.org/


Zangenehpour, Miranda-Moreno, & Saunier 8 

Among the many methods and models developed in the field of machine learning, SVMs are one of 1 

the most commonly used classifiers which have good generalization (38) and one has been used as the 2 

classifier model in this paper.  3 

SVM is by nature a binary classifier: for multi-class problems, several strategies exist in the literature, 4 

such as “one versus rest” where a classifier is trained for each class, or “one versus one” where a classifier 5 

is trained for each pair of classes. The SVM algorithm used in this work is the open source implementation 6 

LibSVM (39) available in the OpenCV library which uses the “one versus one” strategy: the final class is 7 

decided by majority vote of the underlying SVMs. This appearance-based classifier is called HOG-SVM. 8 

Speed Information 9 

Aside from the appearance of an object in the video, another criterion that can help predict the type of the 10 

object is its speed (8). Speed can be aggregated over time and compared to a threshold to eliminate a 11 

possible object type. For example, it is nearly impossible for a pedestrian to walk at a speed of 15 km/h. 12 

Speed can also be combined with other information, such as appearance, using probability principles to 13 

increase the classification accuracy. In this study, alternative methods to combine criteria are used to design 14 

and test different classifiers. 15 

To use speed as a criterion, one first needs to define a discriminative aggregated indicator of the 16 

instantaneous speed measurements made in each frame. The usual aggregation functions are: maximum, 17 

mean, median or percentiles of the speed measurements (e.g., 85th). Since the speed given by the tracker 18 

may be noisy and the maximum and mean are sensitive to noise, the median is used. From this point 19 

forward, speed refers to the median of a road user’s instantaneous speeds. 20 

Classifier Design 21 

Based on the two criteria, the median of the speed measurements and the classification of the HOG-SVM 22 

in each frame, the following classifiers are derived: 23 

Classifier I is the simplest one and relies on two speed thresholds to predict the type of each object. 24 

These two speed thresholds are extracted from Figure 4d, and are chosen as the limit values that define each 25 

speed interval over which the three types of road users are each most probable. Accordingly, this classifier 26 

assigns objects with speed between 0 and 6.5 km/h as a pedestrian; with speed between 6.5 km/h and 27 

14.5 km/h as a cyclist and, with speeds greater than 14.5 km/h as a vehicle. 28 

Classifier II only uses the appearance of each object through the video to predict its type (with HOG-29 

SVM). A method is needed to decide based on the multiple predictions made for each frame in which the 30 

object is tracked. The proportion of frames in which the object is classified as each road user class can be 31 

considered as a probability 𝑃(𝐶𝑙𝑎𝑠𝑠|𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒) and the most likely (the category with the highest 32 

number of detections) is the predicted type for the object.  33 

Classifier III combines both appearance-based and speed-based classifiers based on a simple 34 

algorithm illustrated in Figure 3 to switch between the following three possible situations: 35 

1. The speed of the tracked object is lower than the speed threshold selected for pedestrians; the 36 

object can either be a pedestrian, a cyclist, or a vehicle. In this situation a HOG-SVM classifier 37 

trained for the three classes is used. 38 

2. The speed of the tracked object is lower than the speed threshold selected for cyclists but is higher 39 

than the speed threshold selected for pedestrians. The object cannot be a pedestrian; it can either 40 

be a cyclist or a vehicle. In this situation a binary HOG-SVM classifier trained for the two classes, 41 

cyclist and vehicle, is used. It is expected that a binary classifier outperforms a multi-class 42 

classifier. 43 

3. The speed of the tracked object is higher than the speed threshold selected for cyclists. In this 44 

situation the object can only be a vehicle and no classifier is needed. 45 
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 1 
Figure 3. Flowchart showing the use of speed thresholds to switch between classifiers 2 

Classifier IV combines the probability of each class given the speed and appearance information 3 

using the Bayes’ rule and the typical (naïve) assumption of independence of these two pieces of information 4 

used for classification. To obtain this classifier, consider the typical Bayesian classifier given by the 5 

posterior distribution (likelihood × prior). This is obtained as:  6 

𝑃(𝐶𝑙𝑎𝑠𝑠 | 𝑆𝑝𝑒𝑒𝑑, 𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒) =
𝑃(𝐶𝑙𝑎𝑠𝑠)

𝑃(𝑆𝑝𝑒𝑒𝑑, 𝐴𝑝𝑝𝑒𝑎𝑟𝑛𝑐𝑒)
𝑃(𝑆𝑝𝑒𝑒𝑑, 𝐴𝑝𝑝𝑒𝑎𝑟𝑛𝑐𝑒 |𝐶𝑙𝑎𝑠𝑠) 7 

Then, by the assumption of independency among criteria: 8 

𝑃(𝐶𝑙𝑎𝑠𝑠 | 𝑆𝑝𝑒𝑒𝑑, 𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒)9 

=
𝑃(𝐶𝑙𝑎𝑠𝑠)

𝑃(𝑆𝑝𝑒𝑒𝑑)𝑃(𝐴𝑝𝑝𝑒𝑎𝑟𝑛𝑐𝑒)
𝑃(𝑆𝑝𝑒𝑒𝑑|𝐶𝑙𝑎𝑠𝑠)𝑃(𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒|𝐶𝑙𝑎𝑠𝑠)                        (∗) 10 

Using conditional probability: 11 

𝑃(𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒|𝐶𝑙𝑎𝑠𝑠)𝑃(𝐶𝑙𝑎𝑠𝑠) = 𝑃(𝐶𝑙𝑎𝑠𝑠|𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒)𝑃(𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒)                                      (∗∗) 12 

By replacing (∗∗) into (∗): 13 

𝑃(𝐶𝑙𝑎𝑠𝑠 | 𝑆𝑝𝑒𝑒𝑑, 𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒) =
𝑃(𝐶𝑙𝑎𝑠𝑠|𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒)

𝑃(𝑆𝑝𝑒𝑒𝑑)
 𝑃 (𝑆𝑝𝑒𝑒𝑑|𝐶𝑙𝑎𝑠𝑠) 14 

Finally given that 𝑃(𝑆𝑝𝑒𝑒𝑑) is independent of the classes, it can be said that: 15 

𝑃(𝐶𝑙𝑎𝑠𝑠 | 𝑆𝑝𝑒𝑒𝑑, 𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒) ∝ 𝑃(𝐶𝑙𝑎𝑠𝑠|𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒) 𝑃 (𝑆𝑝𝑒𝑒𝑑|𝐶𝑙𝑎𝑠𝑠) 16 

𝑃 (𝑆𝑝𝑒𝑒𝑑|𝐶𝑙𝑎𝑠𝑠) is estimated through distributions fitted to the empirical speed distributions of the 17 

three road users classes, gathered through manual object classification in the sample video and shown in 18 

Figure 4a,b,c. The speed distributions of pedestrians and vehicles are fitted to normal distributions and the 19 

speed distribution of cyclists is fitted to a lognormal distribution. The parameters of these distributions are 20 

the following (see Figure 4d): 21 

1. Pedestrian speed distribution: normal distribution with mean of Vp
̅̅ ̅=4.91 km/h and standard 22 

deviation of σp=0.88 km/h 23 

2. Cyclist speed distribution: log-normal distribution with location parameter of μc̅̅̅=2.31 (mean of 24 

Vc̅=11.00 km/h) and scale parameter of ςc=0.42 (standard deviation of σc=4.83 km/h) 25 

3. Vehicle speed distribution: normal distribution with mean of Vv
̅̅ ̅=18.45 km/h and standard 26 

deviation of σv=7.6 km/h 27 

Is speed of the tracked object lower 

than threshold for pedestrian speed? 

Three Class HOG-SVM 

(Pedestrian, Cyclist, Vehicle) 
Is speed of the tracked object lower 

than threshold for cyclist speed? 

Two Class HOG-SVM 

(Cyclist, Vehicle) 
The object is a Vehicle 

No 

Yes No 

Yes 
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 1 
Figure 4. Speed distribution and membership function of each object type used for classifier’s design 2 

𝑃(𝐶𝑙𝑎𝑠𝑠|𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒) is computed as for classifier II, over all HOG-SVM classification over the 3 

object existence. Finally, the class of the object is selected as the one with 4 

highest 𝑃(𝐶𝑙𝑎𝑠𝑠| 𝑆𝑝𝑒𝑒𝑑, 𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒). 5 

Classifier V is similar to Classifier IV; it uses probability functions to combine speed and appearance 6 

information. The distribution functions of the road users’ speeds (Figure 4) are used to determine the 7 

membership functions for each object type (mean value and standard deviation for each user type are the 8 

same as the values used for classifier IV) (see Figure 4e). The sum of the membership functions for each 9 

speed is equal to one (because thresholds on pedestrian and cyclist speeds are taken into account, the 10 

membership function for vehicles is equal to one for speeds higher than the cyclist threshold) and can be 11 

calculated as: 12 

𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛) =

exp {−
(𝑉𝑜 − 𝑉�̅�)2

2𝜎𝑝
2 }

exp {−
(𝑉𝑜 − 𝑉�̅�)2

2𝜎𝑝
2 } + exp {−

[ln (𝑉𝑜) − 𝜇
𝑐

̅̅ ̅]2

2𝜍
𝑐
2 } + exp {−

(𝑉𝑜 − 𝑉�̅�)2

2𝜎𝑣
2 }
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(a) Distribution of pedestrians’ speed      (b) Distribution of cyclists’ speed         (c) Distribution of vehicles’ speed 

 

 
(d) Distribution function of P(Speed | Class) 

 
(e) Membership function of object types 
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𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝐶𝑦𝑐𝑙𝑖𝑠𝑡) =

exp {−
[ln (𝑉𝑜) − 𝜇𝑐

̅̅ ̅]2

2𝜍
𝑐
2 }

exp {−
(𝑉𝑜 − 𝑉�̅�)2

2𝜎𝑝
2 } + exp {−

[ln (𝑉𝑜) − 𝜇
𝑐

̅̅ ̅]2

2𝜍
𝑐
2 } + exp {−

(𝑉𝑜 − 𝑉�̅�)2

2𝜎𝑣
2 }

 1 

𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝑉𝑒ℎ𝑖𝑐𝑙𝑒) =
exp {−

(𝑉𝑜 − 𝑉�̅�)2

2𝜎𝑣
2 }

exp {−
(𝑉𝑜 − 𝑉�̅�)2

2𝜎𝑝
2 } + exp {−

[ln (𝑉𝑜) − 𝜇
𝑐

̅̅ ̅]2

2𝜍
𝑐
2 } + exp {−

(𝑉𝑜 − 𝑉�̅�)2

2𝜎𝑣
2 }

 2 

Here 𝑉𝑜 is the speed of the object being classified. Finally the class of the object is selected based on 3 

the highest value of 𝑃(𝐶𝑙𝑎𝑠𝑠|𝐴𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒) ∗ 𝑀𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝(𝐶𝑙𝑎𝑠𝑠). The implementations of the 4 

classifiers, as well as the training and testing functions, are available under an open source license on the 5 

paper webpage http://nicolas.saunier.confins.net/data/zangenehpour14trb.html. 6 

RESULTS 7 

Video data was collected at two intersections for labeled training data for HOG-SVM, and at the signalized 8 

intersection of Avenue des Pins and Rue Saint-Urbain in Montreal during peak hours for testing the 9 

classifiers’ performance. Two different video cameras were used, with resolutions of 800x600 and 10 

1280x960 and a frame rate of 15 fps (Figure 2a,b). One of the cameras has fisheye lens with an ultra-wide 11 

field of view. 12 

The chosen parameters of the HOG feature descriptor are 9 even orientations, with 8x8 pixels for 13 

each cell, and each block made up of 2x2 cells. Before using HOG, bounding boxes are converted to 14 

grayscale images with a normalized size of 64x64 pixels. For the SVM model used for classification, the 15 

nonlinear kernel functions were Gaussian Radial Basis Function (RBF). Speed thresholds used in classifier 16 

I are 6.5 km/h for pedestrians and 14.5 km/h for cyclists. Speed thresholds for classifiers III, IV, and V are 17 

7.5 km/h for pedestrians and 30 km/h for cyclists. 18 

To test the accuracy of the designed classifiers, a different video from the training phase was used. 19 

This video is 232 minutes long and a total of 4756 objects were manually classified to create the ground 20 

truth. The predicted class (by each automated classifier) and the ground truth (observed, manually labelled) 21 

were then compared to compute the accuracy of each classifier.  22 

For multi-class problems, it is crucial to report performance measures for each class and not only the 23 

global accuracy. The components of the confusion matrix cij are the number of objects of true class i 24 

predicted in class j. The performance measures are thus defined for class k: 25 

𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =
𝑐𝑘𝑘

∑ 𝑐𝑘𝑗𝑗
                                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =

𝑐𝑘𝑘

∑ 𝑐𝑖𝑘𝑖
                                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑ 𝑐𝑘𝑘𝑘

∑ ∑ 𝑐𝑖𝑗𝑗𝑖
 26 

The results are shown in Table 1. Classifier IV and classifier V have the best performance among the 27 

tested classifiers. Classifier IV has the best recall rate for pedestrians and best precision for vehicles, while 28 

classifier V has the best recall rate for vehicles (and second best recall rate for cyclists after classifier III, 29 

with only 0.2 % difference) and best precision for pedestrians and cyclists. In the test video the majority of 30 

the traffic was motorized vehicles (around 68 %) with fewer pedestrians (around 22 %) and cyclists (around 31 

10 %). In order to estimate the performance of the two best designed classifiers if the traffic had the same 32 

number of road users in each class, the performance for a balanced number of observations of each user 33 

type (100 observations for each type) is also shown in Table 1. This illustrates that the accuracy changes 34 

when the class distribution changes, and explains that the precision for cyclists is low in part because of 35 

relatively few cyclists in the video. 36 

It is worth mentioning that several misclassifications occurred in cases where multiple objects were 37 

tracked as a single object (over-grouping problem of tracker) or when only a portion of an object was 38 

tracked (over-segmentation problem of tracker). Some samples of these situations are shown in Figure 5. 39 

http://nicolas.saunier.confins.net/data/zangenehpour14trb.html
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 1 

 2 
Figure 5. Example of situations hard to classify 3 

Table 1. Confusion matrices showing each classifier’s performance  

 
Ground Truth 

Accuracy 
Pedestrian Bike Vehicle Total Precision 

P
re

d
ic

te
d

 

Classifier I 

Pedestrian 946 86 277 1309 72.3 % 

72.4 % 

Bike 77 324 793 1194 27.1 % 

Vehicle 0 78 2175 2253 96.5 % 

Total 1023 488 3245 4756  

Recall 92.5 % 66.4 % 67.0 %   

Classifier II 

Pedestrian 742 191 584 1517 48.9 % 

75.9 % 

Bike 121 244 37 402 60.7 % 

Vehicle 160 53 2624 2837 92.5 % 

Total 1023 488 3245 4756  

Recall 72.5 % 50.0 % 80.9 %   

Classifier 

III 

Pedestrian 726 43 64 833 87.2 % 

86.3 % 

Bike 131 373 177 681 54.8 % 

Vehicle 166 72 3004 3242 92.7 % 

Total 1023 488 3245 4756  

Recall 71.0 % 76.4 % 92.6 %   

Classifier IV 

Pedestrian 969 53 180 1202 80.6 % 

88.5 % 

Bike 42 371 198 611 60.7 % 

Vehicle 12 64 2867 2943 97.4 % 

Total 1023 488 3245 4756  

Recall 94.7 % 76.0 % 88.4 %   

Classifier V 

Pedestrian 889 38 82 1009 88.1 % 

90.3 % 

Bike 58 372 130 560 66.4 % 

Vehicle 76 78 3033 3187 95.2 % 

Total 1023 488 3245 4756  

Recall 86.9 % 76.2 % 93.5 %   

Classifier IV 

(balanced 

observation) 

Pedestrian 95 11 6 112 84.8 % 

86.3 % 

Bike 4 76 6 86 88.4 % 

Vehicle 1 13 88 102 86.3 % 

Total 100 100 100 300   

Recall 95.0 % 76.0 % 88.0 %    

Classifier V 

(balanced 

observation) 

Pedestrian 87 8 3 98 88.8 % 

85.3 % 

Bike 6 76 4 86 88.4 % 

Vehicle 7 16 93 116 80.2 % 

Total 100 100 100 300   

Recall 87.0 % 76.0 % 93.0 %    
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The performance of the classifier relies on that of the tracker and therefore any error in the tracking 1 

may lead to errors in the classification process (or ambiguity in classification when road users of different 2 

types are not distinguished by the tracker). In most cases, even when the tracker only identified part of a 3 

pedestrian, cyclist or vehicle, the classifier was still able to classify the object correctly.  4 

Another way to visualize the results of the proposed classifier is through heat-maps (frequency of 5 

trajectory or positions in discretized two-dimensional bins of the space) for the three road user classes 6 

(Figure 6).  7 

The heat-maps show the good performance of classifier V since the trajectories of the different road 8 

user types are overall in the expected locations: pedestrians are on the sidewalks and crosswalks, cyclists 9 

are mostly in the cycle track, and vehicles are on the road and in the lanes. The other interesting information 10 

is the area where the classifier makes errors. For example a few cyclists in the cycle track have been 11 

classified as vehicles or there are some vehicles at the top of the camera view which are classified as 12 

pedestrians or cyclists. 13 

 14 
Figure 6. Snapshot of video and position heat-maps for the three road user types (taken from Classifier V). The most 15 
and least used map locations are respectively red and blue (heat-map colours range from blue to red, passing through 16 
cyan, yellow, and orange) (the resolution of each heat-map cell is 3x3 pixel with respect to the camera resolution). 17 

  
           (a) Snapshot of video frame    (b) Vehicle trajectory heat-map 

  
           (c) Cyclist trajectory heat-map    (d) Pedestrian trajectory heat-map 

 

(e) Scale used for trajectorie heat-maps (log-scale) 
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DISCUSSION 1 

Since the tested classifiers have different precision and recall rates, the choice of the best classifier depends 2 

on the application and preference for missed detections or false alarms for one class or another. For 3 

example, if it is important to detect as many pedestrians as possible at the expense of other road users being 4 

classified as pedestrian, classifier IV is the best (recall rate of 94.7 % for pedestrians). On the other hand, 5 

if it is important that no other road user other than pedestrian is classified as pedestrian then classifier V is 6 

the best (precision of 88.1 % for pedestrians). Overall, classifiers IV (accuracy of 88.5 %) and V (accuracy 7 

of 90.3 %) have the best performance among the tested classifiers. There are several ways to improve the 8 

accuracy of the designed classifiers: 9 

1. Using video data from different viewpoints to train the classifier. Using this approach, the 10 

classifier is generalized for different camera angles. One question is whether the performance will 11 

break down if the viewpoints become too different. The question of using more consistent 12 

viewpoints with the same angle is also raised as it may improve appearance-based classification 13 

by reducing the variability of object appearance. 14 

2. As discussed previously, the classifier accuracy relies on the performance of the tracker algorithm, 15 

so a way to improve classification accuracy is to improve the tracking algorithm. These are some 16 

ideas that can help improve the tracking performance: 17 

i. Increase the camera angle to see objects separate from each other in crowded scenes as one 18 

of the major issues of the tracker is over-grouping in dense traffic. 19 

ii. Compensate the fisheye effect of the camera lens. A camera with a fisheye lens was used 20 

to cover as much of the intersection as possible. However, fisheye lenses produce strong 21 

visual distortion on the corners of the video frame (Figure 2b). This effect reduces the 22 

accuracy of the tracker to map the position of objects in real world coordinates and speed 23 

estimation. By correcting for the fisheye effect of the camera, the usage of position and 24 

speed of an object will be more reliable for classification. 25 

3. In this paper HOG and SVM with a radial basis function were used as feature descriptor and 26 

classifier. Their parameters have been selected through trial and error and should be thoroughly 27 

tested. In addition, other feature descriptors and classifiers should be tested to see if better 28 

accuracy can be achieved. 29 

4. Background subtraction is another possible way to increase the performance of the classifiers, 30 

especially to obtain more precise images of each object (more precisely around its contour). 31 

CONCLUSION 32 

The important value of microscopic data classified by user type is more and more recognized in the 33 

transportation literature in general and in traffic safety in particular.  34 

This paper presented algorithms to design classifiers capable of classifying moving objects in 35 

crowded traffic video scenes (like intersections), into three main road user types: pedestrians, cyclists, and 36 

motor vehicles. Given the limitations of simple classification methods based on speed and appearance, this 37 

research combines these methods through several classifiers in order to improve the classification 38 

performance. 39 

Among the five tested classifiers, the classifiers that combine the probability of both the speed and 40 

appearance of objects show systematically better performance. Accuracy for the best classifier (Classifier 41 

V) was more than 90 %. Due to the similarity in appearance between pedestrians and cyclists (a cyclist 42 

consists of a bicycle and a human who rides the bicycle) and of the large range of cyclist speed, cyclists are 43 

the most difficult road user to classify. False positive rates for the best classifier are 11.9 % for pedestrians, 44 

33.6 % for cyclists, and 4.8 % for vehicles, while the rates for false negative are 13.1 %, 23.8 %, and 6.5 45 

%, respectively.  46 

An final contribution is to release the code used to train and test the different classifiers under an 47 

open source license to enable other researchers to reproduce the methods and improve upon them more 48 

easily.  49 
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Future work will explore changing the parameters of the appearance descriptor and classifier and 1 

incorporating additional information to improve the performance of road user classification, especially that 2 

of cyclists who form the main part of the error. Finally, these classification methods will enable the study 3 

of classified road user trajectories, in particular the influence of different factors on the safety of vulnerable 4 

users at intersections such as the influence of cycle tracks on conflicts between cyclists and right turning 5 

motor vehicles. 6 
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