
PERFORMANCE EVALUATION AND ERROR SEGREGATION OF VIDEO-COLLECTED 1 

TRAFFIC SPEED DATA 2 
 3 

 4 

 5 

Paul Anderson-Trocmé, Graduate Research Assistant  6 

Department of Civil Engineering and Applied Mechanics, McGill University  7 

Room 391, Macdonald Engineering Building, 817 Sherbrooke Street West 8 

Montréal, Québec, Canada H3A 0C3 9 

Email: paul.anderson-trocme@mail.mcgill.ca 10 

 11 

Joshua Stipancic, Corresponding Author, Graduate Research Assistant  12 

Department of Civil Engineering and Applied Mechanics, McGill University  13 

Room 391, Macdonald Engineering Building, 817 Sherbrooke Street West 14 

Montréal, Québec, Canada H3A 0C3 15 

Email: joshua.stipancic@mail.mcgill.ca 16 

 17 

Luis Miranda-Moreno, Associate Professor  18 

Department of Civil Engineering and Applied Mechanics, McGill University  19 

Room 268, Macdonald Engineering Building, 817 Sherbrooke Street West  20 

Montréal, Québec, Canada H3A 0C3  21 

Phone: (514) 398-6589  22 

Fax: (514) 398-7361  23 

Email: luis.miranda-moreno@mcgill.ca 24 

 25 

Nicolas Saunier, Associate Professor 26 

Department of Civil, Geological and Mining Engineering 27 

Polytechnique Montréal, C.P. 6079, succ. Centre-Ville 28 

Montréal, Québec, Canada H3C 3A7 29 

Phone: (514) 340-4711 x. 4962 30 

Email: nicolas.saunier@polymtl.ca 31 

 32 

 33 

Word count: 5614 words + 7 tables/figures x 250 words (each) = 7364 words 34 

 35 

 36 

 37 

 38 

 39 

 40 

November 15
th
, 2014  41 



Anderson-Trocmé, Stipancic, Miranda-Moreno, Saunier   2 

 

  

ABSTRACT 1 
Validating the accuracy of sensors is an essential step in the collection of traffic speed data. The accuracy 2 

of automated speed data has been evaluated in small- and large-scale tests using multiple technologies 3 

and methods. While inductive loops are standard, video-based detectors have demonstrated the ability to 4 

substitute conventional detection devices. Though existing literature documents several issues associated 5 

with extracting vehicle speeds from video, the analysis of speed data, especially at the microscopic or 6 

individual level, has been limited. The purpose of this paper is to evaluate the accuracy of a video-based 7 

detection system, comprised of commercially available video cameras and an open-source computer 8 

vision software system. Several camera orientations were tested along an urban arterial and a highway in 9 

Montreal, Canada. A semi-automated vehicle tracking process was used to extract the vehicle speeds, 10 

which were compared to manually observed speeds. Although the traditional mean relative error approach 11 

led to unacceptable results, a new approach was proposed for the evaluation of traffic detection 12 

technologies. The segregated error approach divides simplistic mean error into separate values for 13 

accuracy and precision. In doing so, several of the camera orientations exhibited precision error values 14 

within the accepted range for speed data quality (5%). Even with large errors, the potential exists to 15 

calibrate video-based speeds, by removing the over- or underestimation bias, to acceptable performance 16 

levels as long as precision error is minimized through appropriate selection of camera position and 17 

orientation. 18 

 19 

 20 

 21 

 22 

Keywords: traffic detector, sensor, video data, object tracking, computer vision, performance, evaluation, 23 

accuracy, precision   24 
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INTRODUCTION 1 
The collection and analysis of vehicular speed data are essential for urban transportation systems. Sensors 2 

that collect accurate and consistent data are necessary to guide engineering decisions and treatments 3 

towards desired impacts in planning, construction, or operations (1). The greatest challenge in any data 4 

collection campaign or large-scale test is the creation of “ground truth” data, or a “reference data set that 5 

represents the actual history of the traffic” (2). The need for accurate data is critical as errors in this early 6 

stage will compound through analysis, skewing study outcomes and misleading decision making (3). Data 7 

quality is paramount, and sensors must be sufficiently accurate for the specific data needs of a given 8 

project (3).  9 

Traditional automated vehicular data collection was limited to the use of inductive loops at fixed 10 

locations (1), to the point that loops became the “de facto standard” in many jurisdictions and are still 11 

widely used today (4). Despite the performance of these systems, it is impractical and costly to maintain 12 

an adequate network of permanent collection locations in an urban road network (5). Accordingly, the use 13 

of non-intrusive traffic data collection technologies has become increasingly popular. Non-intrusive 14 

devices do not require access to the travel lane for installation, are often installed outside the right of way, 15 

and are safer to install and operate compared to other technologies (1). Video-based traffic sensors are 16 

among the most promising non-intrusive technologies. Simple video cameras have the ability to substitute 17 

conventional detection devices (6), provide flexibility in mounting locations, enable multiple lane 18 

detection, and provide rich positional data beyond counts and speed (1).  19 

As manually processing video is resource demanding, “there is a high demand for automation of 20 

this task” (7). Numerous systems have been developed for the automated extraction of traffic data from 21 

video footage using computer vision techniques (8; 9). These systems are able to provide a wide variety 22 

of data, from conventional traffic parameters such as flow and velocity (1; 10), to new parameters such as 23 

trajectories which provide information on manoeuvring and traffic conflicts (11). Unlike other detectors, 24 

the raw sensor signal (video) contains rich information (the entire series of events as they occurred during 25 

data collection) that can be extracted and verified manually, with the potential to be extracted 26 

automatically as technology evolves. 27 

While video data has many advantages, before any system is relied on for traffic data collection, 28 

the accuracy of the system must be verified to ensure data quality is maintained. With respect to existing 29 

literature, this research provides several key contributions. Most attempts to verify data quality have 30 

quantified error based on aggregate data, with little research focused on reasonable accuracy for 31 

individual vehicle data. Moreover, existing literature provides little guidance on acceptable accuracy for 32 

microscopic speed data. Methods for evaluating error have considered simplistic mean error without 33 

consideration for more robust analyses. The purpose of this study is to evaluate the accuracy of a video-34 

based detection system, comprised of commercially available consumer video cameras and the open 35 

source Traffic Intelligence video analysis software system (11). The objectives of this research are to; 36 

evaluate the accuracy of automated vehicular speed extraction, recognizing detection as a necessary 37 

precursor; and, to propose a technique for evaluating separately the precision and accuracy of collected 38 

traffic data. 39 

 40 

LITERATURE REVIEW 41 
Vehicle tracking through computer vision is a powerful tool that has seen implementation in several areas 42 

of transportation and safety research. Vehicle tracking techniques provide information in the form of 43 

vehicle trajectories (10), or the sequence of positions indexed by time of an object of interest, such as a 44 

vehicle or pedestrian, from which the velocity vector can be derived. The nature of video detection allows 45 

vehicles to be tracked continuously over a road segment rather than being detected at a single location. 46 

The analysis of vehicle trajectories can be used to automate otherwise resource-intensive studies, 47 

including vehicle manoeuvring (10), lane-changing, queuing patterns (6), automated incident detection 48 

(4), driver behaviour (7), and conflict analysis (11). This increased sophistication does not prevent video-49 

based sensors from substituting or complementing traditional traffic detectors. Along with trajectories, 50 

video has the ability to capture traditional traffic parameters including flow, speed, headway, and density 51 
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at both the individual vehicle (10) and corridor level (6). This vehicle data has applications in the 1 

calibration of traffic flow models (10) and surrogate safety analysis. As detecting and extracting the 2 

position and speed of vehicles provides the basis for surrogate safety analysis, verifying the parameters 3 

themselves will lend additional credibility to the technique. 4 

To extract traffic data, vehicles must first be successfully detected. In a study of video-based 5 

vehicle classification, Gupte et al. (12) achieved a detection rate of 90%, while the system utilized by 6 

Messolodi et al. (13) exhibited an average count error of -5.2% operating in real time. Analysis of video-7 

extracted speed data has been limited, especially at the individual vehicle level, where the amount of 8 

video that must be processed is high and analysis is resource intensive (6). Additionally, methods used to 9 

assess speed data quality have focussed on simplistic approaches for quantifying error. Coifman (10) 10 

extracted data for velocity, flow, and density collected in real-time on a freeway facility. Data was 11 

temporally aggregated (averaged) to 5-minute intervals, resulting in 514 samples. When compared to 12 

ground truth from calibrated inductive loops, 100% of the samples exhibited speed error less than 10%, 13 

while 95% exhibited error less than 5%. Malik et al. (14) showed improvements using post-processing. 14 

Across the study, detection rates varied between 75% and 95%. Using 5-minute aggregation periods, 15 

nearly all samples showed speed error of 5% or less, though error varied with lane position relative to the 16 

camera. MacCarley et al. (2) did not strictly consider the accuracy of each observation, but claimed that 17 

95% of all extracted speeds were “reasonable” when compared to speeds determined manually. 18 

Dailey (15) utilized individual vehicle data, but considered only 190 vehicles from 40 seconds of 19 

video. While able to demonstrate that the mean error of speed across all observations was zero, the 20 

individual relative error for each observation varied between -40% and 80%. Though estimating mean 21 

traffic speed was possible, the technique is impractical for microscopic data. Schoepflin (16) compared 22 

speed distributions created with manual data and video data, noting that they were approximately equal in 23 

mean and distribution by visual comparison. The authors claimed this indicated “certain equivalence” 24 

between the video-based speeds and actual events. Although errors of up to 20% were possible, averaging 25 

individual speeds over 20-second intervals reduced variability by a factor of 10. These studies exemplify 26 

the issue with data aggregation. Using temporally aggregated data for speed analysis effectively 27 

eliminates the influence of the highest and lowest recorded speeds and obscuring the performance of a 28 

device exhibiting compensating errors (cancellation of high and low outliers) (5), behaviour clearly 29 

present in existing video-based systems. 30 

Several notable issues exist with regard to extracting vehicle speeds from video, including false 31 

or missed detections. False detections involve the detection of any object that does not exist. Shadows 32 

cast by vehicles in adjacent lanes are particularly problematic (2). Vehicles can be missed if they are 33 

partially or fully occluded by other vehicles. Occlusions can also disrupt trajectories, creating inaccurate 34 

trajectories and speed estimations (11). Vehicle position relative to the camera may affect accuracy. 35 

Vehicles that are further from the camera occupy a smaller number of pixels, and may be difficult to 36 

identify and track, leading to potential variability in speed data (6). Vehicle tracking may be inhibited by 37 

an overestimation of derivative values, in which the “distance between two measured points is 38 

systematically biased towards longer distances, which results in speed overestimation” (7).  39 

If video detection is to be considered a reasonable alternative to other devices, data must meet 40 

similar quality and reliability requirements. Bahler (1) indicated that inductive loops exhibiting count 41 

errors less than 4% over 1-hour aggregation periods was of sufficient quality (5). The same study 42 

demonstrated that most commercially available non-intrusive traffic detectors, including video, were able 43 

to provide counts within 3% of actual, and speeds within 8% (1). However, most attempts in existing 44 

literature to verify data quality have quantified error based on aggregated data, with little research focused 45 

acceptable accuracy for individual vehicle data. Additionally, there has been no consideration for 46 

evaluating device precision (repeatability of speed measurement) and accuracy (general over- or 47 

underestimation bias) separately. In general, researchers should endeavour to find detectors that 48 

“approach the ideal, but fall within some level of tolerance” given the specific application (3). 49 

 50 

 51 



Anderson-Trocmé, Stipancic, Miranda-Moreno, Saunier   5 

 

  

METHODOLOGY 1 

 2 

Site Selection, Instrumentation, and Data Collection 3 
The quality of video-extracted traffic speeds was evaluated in a highway and arterial environment to 4 

incorporate variation in geometry and traffic parameters such as speed and volume. Autoroute 15 (A15) in 5 

Montreal, Quebec, Canada is a major north-south corridor with an AADT of approximately 90,000 (17). 6 

Data was collected in September 2013 at midday in clear conditions. At the test location near Boulevard 7 

Henri Bourassa, four lanes are present in each direction, and the posted speed limit is 100 km/h. 8 

Boulevard Taschereau in Brossard, Quebec, Canada runs east-west on the South Shore of Montreal, 9 

connecting two major bridges and servicing important highway connections to the island of Montreal. 10 

The section chosen for this study, near Boulevard Lapinere, featured five lanes in each direction with a 11 

posted speed limit of 50 km/h. Data was collected in October 2013 during the morning peak in clear and 12 

overcast conditions. 13 

A GoPro Hero 3 camera was used to collect video at both sites, and was set to record 720p video 14 

at 30 frames per second. The camera is capable of recording up to six hours of video on a single battery 15 

charge, is highly portable, and provides flexibility in mounting location. Sites were chosen with existing 16 

roadside infrastructure for camera installation. At the A15, a pedestrian overpass structure was utilized, 17 

allowing the camera to be mounted closer to the roadway compared to other potential locations. The 18 

video camera was attached to the guardrail on the overpass, shown in Figure 1a. At Taschereau, the 19 

camera was mounted to a 20-foot telescoping fibreglass surrogate pole, which was subsequently fixed to 20 

the base of existing luminaire poles, shown in Figure 1b. The close proximity of adjacent poles allowed 21 

for the collection of simultaneous video data from multiple orientations. 22 

 23 

     24 
                     (a)         (b) 25 

  26 

FIGURE 1  Mounting configurations for freeway (a) and arterial (b) environments 27 

 28 
In addition to multiple sites, multiple camera orientations were utilized to analyze the effect of 29 

orientation on reported accuracy. Knowledge of accuracy with respect to the distance between the object 30 

and camera is vital because the ability to utilize multiple orientations improves flexibility and provides 31 

more mounting options, which may benefit data collection in urban environments. Three camera 32 

orientations were used at each site. For the first orientation (Perpendicular) the camera was positioned 33 

over the roadway orthogonal to the direction of travel. This orientation may provide the most accurate 34 

speeds, as vehicles are relatively close to the camera and the effects of perspective are minimized. Two 35 

parallel orientations, with the camera positioned parallel to the direction of travel, were also tested. A 36 
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parallel orientation is beneficial if information, such as vehicle trajectory, is required over a longer 1 

segment of the road. This orientation was used with one speed extraction zone approximately 10 m from 2 

the camera (Parallel Close) and one approximately 20 m from the camera (Parallel Far). At least 30 3 

consecutive minutes of video were recorded for every orientation at each site. The locations of the 4 

cameras and their data extraction zones are provided in Figure 2. These orientations allowed for speed 5 

data to be collected at three different camera-to-object distances. 6 

 7 

     8 
(a)         (b) 9 

 10 

FIGURE 2  Perpendicular (A), Parallel Close (B), and Parallel Far (C) study areas (white and black 11 

dots denote the camera positions corresponding to the color of the study area letters) for (a) arterial 12 
and (b) highway locations (aerial images from Google Maps. https://www.google.ca/maps/) 13 

 14 

Feature-Based Tracking Algorithm 15 
Data extraction was automated using an open-source computer vision software system, Traffic 16 

Intelligence (18), developed at Polytechnique Montreal, Canada. The program enables users to analyze 17 

video, extract vehicle trajectories, and evaluate trajectory data using several libraries and tools. The 18 

primary tool is a feature-based tracking algorithm that outputs trajectories for all moving objects in the 19 

video frame, which are mapped to real-world measurements using a homography matrix to convert object 20 

positions from the image (pixels) to the road surface (meters). The extraction and grouping of trajectories 21 

into corresponding vehicles is a crucial step. First, moving points, or features, are identified and tracked 22 

between consecutive frames. Features are grouped into objects based on several criteria, and are stored in 23 

a database with their two-dimensional coordinates and instantaneous velocity values for each video frame.  24 

The main issues with feature-based tracking are over-segmentation and over-grouping of 25 

trajectories. Over-segmentation occurs when a single object is assigned multiple trajectories. Over-26 

segmentation can lead to inflated vehicle counts and may skew speed distribution, but does not affect 27 

speed accuracy since grouped features belong to a single vehicle. Over-grouping occurs when multiple 28 

vehicles are represented by a single trajectory, due to the proximity of neighbouring features. The over-29 

grouping of objects will lead to inaccurate speed calculations within a range (if several objects are 30 

grouped, they must have similar speed by construction) and false volume counts (19). Given these issues, 31 

the most important parameters within the tracking software are related to the criteria used for grouping 32 

features into objects. In order to accurately apply the software, the key parameters were calibrated by 33 

ensuring extracted counts matched manual counts within 2% over a sample of the collected video. 34 

 35 

Data Extraction 36 
The data sets were compiled following a semi-automated approach. The extraction of speeds was 37 

completely automated through the computer-vision software. Virtual speed boxes were added to the video 38 

A
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frame, where extracted trajectories were evaluated and instantaneous object speeds were averaged to 1 

obtain the mean speed over the box length of 10 to 12 meters, measured using standardized pavement 2 

marking lengths. Speed boxes were created for two lanes (Lane 2 and Lane 3, with Lane 2 being the 3 

rightmost lane), for each orientation, at both sites, yielding a total of 12 study areas. The video output 4 

provides an object number and trajectory overlaid on the corresponding vehicle. Ground truth comparison 5 

speeds were determined manually for those vehicles that had been tracked. Using the length of the speed 6 

box and the travel time (in frames, converted using the video frame rate), the speed of the vehicles could 7 

be calculated. This method results in a discrete set of possible ground truth speeds, as only an integer 8 

value of frames is possible for manually computing travel time. This method results in a margin of error 9 

of approximately 2 % at 50 km/h and 4% at 100 km/h. Manual speeds were matched one-to-one with the 10 

extracted speeds using the corresponding object number. Vehicles that were over-segmented or over-11 

grouped were removed from the data set. 12 

 13 

Data Analysis 14 
Analysis of the extracted speeds was completed in three steps. First, the mean relative error was 15 

calculated for every orientation at each site. The use of mean error is a simplistic quantification method 16 

for speed measurement and is consistent with analyses demonstrated within existing detector testing 17 

literature. A sample of 100 consecutive vehicles was selected in each of the 12 study areas, for which the 18 

mean relative error was calculated for the extracted speeds. 1200 total observations represent a fairly 19 

substantial effort for manual verification. The error was calculated for each individual record by 20 

normalizing the difference between the automatically extracted and manually observed speed. These 21 

individual errors were averaged across the sample to yield the mean relative error, according to 22 

 23 

𝑀𝑒𝑎𝑛 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =  
1

100
∑

|𝑉𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑−𝑉𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑| 

𝑉𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
    (1) 24 

 25 
To better understand the behaviour of the detector and the characteristics of the errors, and to 26 

observe trends across lanes and orientations, the extracted speeds were plotted against the observed 27 

speeds in a data visualization exercise. The plots utilize a diagonal line to indicate ideal detector 28 

performance (that is, data from an ideal detector follows the line y=x). Data points above the line indicate 29 

overestimation of speed, while points below the line indicate underestimation. A fitted line with slope 30 

equal to 1 can be added to the data which allows for the observation of accuracy (the distance between the 31 

line of best fit and the line y=x) and precision (the residual errors between the data points and the line of 32 

best fit) as separate phenomena, as illustrated in Figure 3. 33 

 34 

.  35 

FIGURE 3  Illustration of error segregation 36 
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This study contends that mean error is insufficient at capturing the true behaviour of detectors and 1 

other measures are necessary to define device precision and accuracy separately. While data plots provide 2 

this information visually, it is beneficial to compute the relative error for precision and accuracy. Utilizing 3 

relative error values matches the approach utilized in existing literature, and provides an intuitive and 4 

communicable comparison between sites and camera orientations. The y-intercept of the fitted line 5 

quantifies the difference between the detector and ideal behaviours and indicates the magnitude of 6 

difference between the mean of the extracted speeds and the mean of the observed speeds. The precision 7 

error is quantified similarly to the mean error, with the subtraction of a correction factor equal to the y-8 

intercept of the fitted line. To normalize the intercept value consistent with the relative mean error, the y-9 

intercept is evaluated at every data point (divided by the harmonic mean of observed speed). Values for 10 

relative precision and accuracy error are calculated as 11 

 12 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 =  
1

100
∑

|(𝑉𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑−𝑦 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)−𝑉𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑| 

𝑉𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
   (2) 13 

 14 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝐸𝑟𝑟𝑜𝑟 =
1

100
∑

|𝑦 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡| 

𝑉𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
            (3) 15 

 16 

RESULTS 17 

 18 

Mean Error Approach 19 
Mean relative errors are reported in Table 1. Extracted speeds exhibit important difference when 20 

compared to manually observed speeds at many of the study areas. At Taschereau, the mean error in five 21 

of the six cases exceeded 10%, and variation between the lanes is observed for a single camera 22 

orientation. For the A15, the mean error values are consistently lower with less variation between the 23 

lanes (between 3% and 12%). The results of the mean error approach indicated that video extracted 24 

speeds do not fall within acceptable limits for traffic detectors at Taschereau. For the A15, the video-25 

based speed data is of acceptable quality (<5%) for exactly half of the study areas. In general, if 26 

performance were quantified using only the mean relative error, then the video data would fail to meet the 27 

performance requirements for traffic speed data and would be unacceptable for future studies. 28 

 29 

TABLE 1  Mean Relative Error Values for Video-Extracted Speeds 30 

 31 

  Mean Relative Error 

 Lane 2 Lane 3 

Taschereau     

   

Perpendicular 0.16 0.08 

Parallel close 0.22 0.12 

Parallel far 0.15 0.15 

   

A15     

   

Perpendicular 0.08 0.03 

Parallel close 0.05 0.05 

Parallel far 0.10 0.12 

      

 32 

 33 

 34 
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Data Visualization 1 
To better understand device behaviour, the data visualization exercise was completed for all study areas, 2 

the results of which are presented in Figure 4 and Figure 5. The detected speeds were plotted against the 3 

observed speeds, and a fitted line was added with the slope held equal to one. Fixing the slope to be equal 4 

to 1 indicates an assumption that over- or underestimation is independent of operating speed; an 5 

assumption that holds as no contradictory patterns of error were observed in the data and the lines appear 6 

to provide a sufficient fit. Using this technique, the intercept of the trend line can indicate the direction 7 

and magnitude of the general estimation error (the bias), while the coefficient of determination, R
2
, can 8 

indicate the precision of the extracted speeds (the “spread” around the trend line). Based on the intercept 9 

values alone, 11 of the 12 study areas exhibit overestimation, consistent with previous research (7). 10 

While the intercept provides insight into the accuracy of the extracted speeds, the R
2
 value for 11 

each trend line reveals the precision, or repeatability of each extracted speed measurement, with a higher 12 

R
2
 indicating a higher degree of repeatability. In general, the R

2
 values for the perpendicular camera 13 

orientation were the highest in all cases, ranging between 0.77 and 0.89. The parallel close orientation had 14 

the second highest repeatability, with R
2
 values between 0.26 and 0.63. The worst results were for the 15 

parallel far orientation, with R
2
 values near zero. R

2
 was calculated as 16 

 17 

𝑅2 =  1 −
𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
     (4) 18 

 19 

Therefore, the negative R
2
 value in Figure 4e indicates that the fitted line (with slope equal to 1) fits the 20 

data more poorly than the mean value of speed (residual sum of squares is greater than total sum of 21 

squares). 22 
 23 
Segregated Error Approach 24 
While the visualization exercise proved to be powerful by allowing observation of both precision and 25 

accuracy as separate phenomenon through the use of the R
2
 and intercept values, it is beneficial to 26 

formally compute the relative errors using the presented formulae. The segregated errors for all sites and 27 

orientations are presented in Table 2. No patterns are observable from the mean error alone. There is no 28 

clear indication that one orientation will consistently provide the lowest mean error, and the video data 29 

fails to meet the performance standards required for collection of disaggregate traffic speeds. When the 30 

error is segregated, more interesting results are observed. Accuracy similarly appears to be independent of 31 

orientation and lane, but also of the initial mean error. 32 

 33 

TABLE 2  Segregated Relative and Absolute (km/h) Error Values for Video-Extracted Speed 34 
 35 

  Lane 2 Relative (Absolute) Error Lane 3 Relative (Absolute) Error 

  Mean Accuracy Precision  Mean Accuracy  Precision 

Taschereau             

       

Perpendicular 0.16 (8.7) 0.17 (8.7) 0.04 (2.2) 0.08 (4.2) 0.07 (3.7) 0.04 (2.3) 

Parallel close 0.22 (11.1) 0.20 (10.2) 0.10 (5.0) 0.12 (6.1) 0.05 (2.8) 0.10 (5.1) 

Parallel far 0.15 (7.8) 0.11 (5.9) 0.11 (5.7) 0.15 (8.2) 0.05 (2.7) 0.13 (7.3) 

       

A15             

       

Perpendicular 0.08 (7.7) 0.08 (7.2) 0.03 (3.3) 0.03 (3.3) 0.02 (2.1) 0.03 (2.7) 

Parallel close 0.05 (4.5) 0.04 (3.6) 0.05 (4.1) 0.05 (4.7) 0.03 (3.0) 0.04 (3.6) 

Parallel far 0.10 (9.5) 0.04 (3.8) 0.09 (8.6) 0.12 (10.6) 0.08 (7.1) 0.10 (8.9) 

              
  36 
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 1 
      (a)        (b) 2 

   3 
      (c)       (d) 4 

   5 
      (e)       (f) 6 
 7 

FIGURE 4  Extracted and observed speed for Taschereau, perpendicular Lane 2 (a) and Lane 3 8 

(b), parallel close Lane 2 (c) and Lane 3 (d), and parallel far Lane 2 (e) and Lane 3 (f) 9 
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 7 

FIGURE 5  Extracted and observed speed for A15, perpendicular Lane 2 (a) and Lane 3 (b), 8 

parallel close Lane 2 (c) and Lane 3 (d), and parallel far Lane 2 (e) and Lane 3 (f)  9 
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However, the precision error does yield promising results. The perpendicular camera orientation 1 

consistently produced the lowest precision error (3% to 4%), followed by the parallel close orientation 2 

(4% to 10%) and the parallel far orientation (9% to 13%). This indicates that minimizing the distance 3 

between object and camera will improve the precision of speed measurements and that the repeatability of 4 

speed measurements is improved when the speed extraction zone is closer to the camera. Precision is 5 

consistent across multiple lanes for a given camera orientation. At Taschereau, the data was collected 6 

simultaneously for each lane and each orientation. Therefore, the samples at Taschereau contain the same 7 

vehicles and differences in observed speeds across study areas are negligible. Collecting data 8 

simultaneously and using the same vehicles across each sample data set further validates the results. The 9 

precision is always less than the total mean relative error. This is significant, because, if the general over- 10 

or underestimation bias can be removed from the data, the overall performance of video-based speed 11 

extraction can be improved. 12 

Some differences were observed between the test sites. The precision error at the A15 was 13 

consistently lower than the errors reported at Taschereau. While the errors for the perpendicular 14 

orientation were approximately equal, the errors for both parallel configurations at Taschereau were 15 

between 3% and 5% higher. Some variation is likely explained by difference in camera setup, distance to 16 

speed extraction zone, and speed limit. At Taschereau, the camera location on the side of the road skewed 17 

the orientation, as it was impossible to install the camera exactly parallel to the lanes, while at the A15, 18 

mounting to the overpass structure allowed for true parallel orientations. The camera mounting height 19 

also varied between sites. The pole used along Taschereau has a maximum height of 20 feet whereas the 20 

overpass height along the A15 was approximately 25 feet above the road surface. Operating speeds at 21 

Taschereau were approximately 55 km/h, while at the A15 operating speeds were approximately 100 22 

km/h. At least a portion of the variation can be attributed to these differences. 23 

 24 

Discussion 25 
The results above indicate that precision is dependent on camera orientation and may be predictable in 26 

nature. Precision is dependent only on the ability of the software to recognize and group features and to 27 

track objects throughout the video, an ability that is constant for a given camera orientation. For example, 28 

using a perpendicular orientation, the relative ease of object tracking is high, because objects are closest 29 

to the camera, features are distinct, and pixels represent smaller real-world distances. In this situation 30 

repeatability is high, and even if errors are made in calibrating the tracking software or homography, the 31 

error will manifest in all extracted speeds (even inaccurate speeds will be consistently inaccurate). In 32 

contrast, accuracy does not appear to be predictable. Accuracy is dependent on the calibration of the 33 

software and creation of the homography, and is less dependent on the ability to recognize and track 34 

features. Homography and software calibration must be completed for each camera installation, resulting 35 

in errors that are unique for each data set. These errors are independent of the tracking method itself, and 36 

are therefore less predictable. 37 

Although the perpendicular orientation yields more precise vehicle speeds compared to the 38 

parallel close angle, both orientations serve a purpose in different data collection applications. The 39 

availability of roadside structures suitable for video data collection is a deciding factor in many situations. 40 

One of the most important issues with the perpendicular orientation is the occlusion that occurs when 41 

vehicles in separate lanes travel through the extraction zone simultaneously. If the recording system 42 

cannot be installed high enough above the road surface, a substantial number of vehicles can be missed, 43 

resulting in a false representation of the traffic environment. Alternately, the parallel orientation is 44 

necessary when vehicle interactions and lateral movements need to be observed. Ideally, both orientations 45 

should be complementary, offering a more detailed picture of the traffic environment. 46 

 47 

CONCLUSIONS  48 
This study evaluated the quality of disaggregate vehicle speed data obtained from video-based detection 49 

and tracking software. Several factors potentially affect data quality, as observed from multiple camera 50 

orientations that were tested along two lanes of arterial and freeway facilities. The traditional mean 51 
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relative error approach indicated that the video extracted speeds failed to meet the performance 1 

requirements for traffic speed collection. In order to better understand the nature of the errors, a technique 2 

was proposed for evaluating separately the precision and accuracy of collected data. The proposed 3 

segregated error approach divides the mean error into separate values representing accuracy and precision 4 

error. In doing so, several of the camera orientations exhibited precision error values less than 5% for 5 

disaggregate data, which approaches previously established thresholds for aggregate speed data. In the 6 

past, a single error value was used as a threshold for acceptable data quality. Under the proposed scheme, 7 

it is clear that the use of a single value is a narrow-minded approach to data collection. The results of this 8 

research show that, in general, precision error is small (less than relative mean error) and predictable, 9 

while accuracy error may be neither.  10 

 This result indicates that if the general over- or underestimation bias can be removed from the 11 

data, then the overall quality of video-extracted speeds may be improved. The calibration of video data 12 

could be achieved by comparing extracted speeds to a set of manually observed speeds, and subtracting 13 

the intercept of the fitted line as demonstrated herein. This would reduce the error of the video-based 14 

speed to the magnitude of the precision error, which is often within reasonable standards defined by 15 

existing literature. While this method may improve the quality of the extracted speeds, the necessity of 16 

100 manual speed observations may be impractical in some cases. Therefore, future work should explore 17 

other methods of calibrating video data which require less manual intervention, using, for example, 18 

training and test data sets from other ground truth detectors to estimate the transferability of the 19 

calibration (whether the extracted speeds can be consistently corrected across sites to reach acceptable 20 

performance). If the intercept calibration approach is preferred, then the Pearson’s correlation coefficient 21 

should be used to verify the linearity of video-based speeds with respect to the manually observed speeds. 22 

In the future, additional work should be completed to verify the linearity of video-based speeds across 23 

multiple sites and camera orientations 24 

 The segregated error approach should be applied in selecting data collection devices with high 25 

levels of precision, recognizing that there are opportunities to eliminate or reduce the over- or 26 

underestimation bias. This result has implications for the testing of new traffic detection technologies and 27 

the selection of technologies for the process of traffic data collection. Even with large errors, the potential 28 

exists to calibrate video data to acceptable levels of performance, so long as precision error is minimized 29 

through appropriate selection of camera position and orientation. The greatest benefit of the segregated 30 

error approach is that it allows for data collection by devices that might be dismissed as inaccurate by 31 

traditional approaches. In the future, the behaviour of more detection technologies should be evaluated 32 

using the segregated error approach. Although the proposed approach proved effective, the method should 33 

be compared to other statistical approaches in future work. 34 
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