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ABSTRACT1
As time series are collected through more and more pervasive devices carried by users and vehicles,2
new tools are necessary to understand and mine the large amounts of transportation data being thus3
generated. This work proposes a new similarity measure for time series that is applied to surrogate4
measures of safety and other indicators characterizing road user interactions. The new similarity5
measure based on the aligned longest common sub-sequence is paired with a custom clustering6
algorithm that does not require to set the number of expected clusters and remains interpretable7
through the use of prototype indicator profiles as cluster representatives. The method is applied8
to five indicators, including time to collision and probability of collision, for a large real world9
dataset of traffic videos of collisions and conflicts. The results confirm the general assumption of10
surrogate methods for safety analysis that some interactions without a collision have very similar11
processes to collisions. It also highlights the danger of using a significant proportion of candidate12
interactions without a collision that seem to share little similarities with collisions.13
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INTRODUCTION1
As Moore’s law makes sensors and computers ubiquitous in vehicles, road environments and on2
users, more and more data is collected continuously on all vehicles and road users. Examples are3
location data from vehicle and personal GPS sensors, road user trajectories extracted from traffic4
cameras, vehicle kinematic data and engine operational data from on-board diagnostics (OBD) de-5
vices. Storing this data results in large datasets of temporal measurements characterizing different6
elements of the road system. This data has the potential to be useful for several transportation7
applications, e.g. activity patterns, vehicle-based and site-based safety diagnosis, calibration and8
validation of macroscopic and microscopic models, behaviour observations at various space and9
time scales. However the promise of this “big data” can only be fulfilled if new methods are10
developed to deal with it and mine the large datasets that can be accumulated. Though aggregat-11
ing spatio-temporal data over time and space wastes the potential of data collected at much finer12
resolutions, analysis often rely on reduced data for lack of expertise and tools, and for practical13
reasons.14

Of particular interest is the development of methods for the surrogate analysis of safety.15
Traditional collision-based diagnosis methods have several shortcomings that have been repeatedly16
covered in previous work, e.g. in (1, 2). There is therefore a search for proactive methods that do17
not require to wait for accidents to occur. These surrogate methods rely on the observation of18
all interactions and the measure of their “severity” or proximity to a potential collision through19
continuous safety indicators such as the time to collision (TTC). These observations are more and20
more commonly obtained automatically through vehicle-based sensors such as data loggers (3) or21
dedicated devices installed for example for naturalistic driving studies (4) and site-based sensors22
such as video cameras with video analysis software (2, 5, 6). However, most analyses of this data23
and, to the authors’ knowledge, all analyses of surrogate safety indicators rely on the aggregation24
of the temporal indicators into a single value. The most commonly used in traffic conflict analyses25
is the minimum TTC, or a severity level based on the TTC at a specific instant coupled with the26
road user speed at the same instant in the case of the Swedish traffic conflict technique (7). This is27
a terrible loss of information that could partially explain the mixed results to validate and transfer28
surrogate measures of safety. As stated in (8), “the problem with values taken at a certain time is29
that they do not incorporate any information before or after the chosen moment, creating a risk that30
even very different encounters might be classified in the same category”.31

This paper is a follow up on (9) that relied on contextual information and aggregated mea-32
sures of road users’ individual speeds and speed differential to cluster interactions with and without33
a collision. The purpose is to better understand collision processes and the similarities between all34
interactions. This will help determine whether all interactions without a collision can be used as35
surrogates for collisions. There is preliminary evidence that this is not the case and that some cate-36
gories of interactions or interactions of different severity levels may not be associated with safety,37
i.e. that more interactions would translate into more collisions over the long run, and even be in-38
dicators of a good level of safety through the promotion of driver awareness and learning through39
interactions with other road users (10).40

This paper presents ongoing work on the development of a method to compare and cluster41
time series or profiles of interaction indicators, including surrogate measures of safety. A new42
similarity measure based on the longest common sub-sequence (11) is proposed to better measure43
indicator profile similarity by taking into account the rate of change. A custom clustering algorithm44
is developed that does not require to set the number of expected clusters and remains interpretable45
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through the use of prototype indicator profiles as cluster representatives. The method is demon-1
strated on a large video dataset of interactions with and without a collision. The final contribution2
of this paper is the development of an open source library that implements the proposed methods3
and the release of the exact code used to produce the presented analyses in order to encourage re-4
producibility and wider adoption of the methods. The background is presented in the next section.5
It is followed by a description of the method, which is then demonstrated on a real world dataset.6
Finally the paper is concluded and future work is discussed.7

BACKGROUND8
Surrogate Safety Analysis9
There is a growing body of literature on surrogate methods for safety analysis and readers are10
referred to these PhD theses (12, 13, 14) and the TRB white paper (15) for an introduction to11
the field and a coverage of the early techniques known as traffic conflict techniques (TCT). The12
defining characteristic of relevant traffic events for safety is the collision course, which is the13
situation in which two road users would collide if their movements remain unchanged (taken from14
the definition of a traffic conflict as “an observable situation in which two or more road users15
approach each other in time and space to such an extent that there is a risk of collision if their16
movements remain unchanged” (16)). Identifying a collision course at a given instant therefore17
requires to predict road users’ future positions from their current and past positions. The default18
motion prediction method is to assume that the road users will move at constant velocity. The19
choice is rarely justified, does not yield robust measurements and does not take the context (the20
road, e.g. in a curve, and traffic) into account which results in unrealistic motion prediction (e.g.21
going off the road or into a wall). New prediction methods have been proposed in (17, 18) with22
open source implementations (6).23

For surrogate safety analysis to be objective, a number of quantitative safety indicators have24
been proposed in the literature to measure the proximity to a potential collision, or probability of25
collision, and the severity of the potential collision. TTC is the best known of these indicators. It26
is defined for a given motion prediction method as the time required for two road users to collide27
following the predicted trajectories. If several predicted trajectories are available, with correspond-28
ing probabilities, the expected TTC can be computed (2). Many other safety indicators, including29
post-encroachment time (PET), deceleration to safety time, etc., have been presented over the years30
(see (12, 13, 14) and their references for more details).31

Interpreting Interactions and Safety Indicators32
In most TCTs, a specific value of a continuous safety indicator is used and compared to a threshold33
to distinguish, usually for diagnosis purpose, the most severe conflicts from “safer” interactions,34
defined as a situation in which two road users are within some distance. For example, Hydén35
(19) used the TTC just before one of the road users attempts an evasive action called the time to36
accident with a threshold of 1.5 s to define severe conflicts. The Federal Highway Administration37
(FHWA) designed the piece of software Surrogate Safety Assessment Model (SSAM) to perform38
the analysis of trajectory data extracted from microscopic simulation software (20). SSAM uses a39
predefined threshold for different safety indicators to identify the most severe conflicts among all40
road user interactions (e.g. the default threshold on minimum TTC is 1.5 s). The most severe value41
of safety indicators is typically used to summarize them, for example minimum values for spatio-42
temporal indicators (e.g. distance, TTC and predicted PET) or maximum values for probability43
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of collision or deceleration to safety time. However, as argued in the introduction and in (8),1
narrowing down the whole interaction to a single value leads to losing a lot of information. Even2
the work of Minderhoud and Bovy (21) highlighted in (8) still condenses the whole indicator profile3
into a single measure through integration.4

There are few examples of the use or interpretation of continuous traffic event indica-5
tors over certain time intervals. Some studies on driver behaviour have relied on speed profiles.6
Parkhurst (22) examined the shape of speed profiles to understand the driver behaviour at urban7
and rural non-signalized intersections. Laureshyn et al. (23) classified the speed profiles, extracted8
using automated video analysis, of vehicles making left turns at a signalized intersection and inter-9
acting with oncoming traffic and crossing pedestrians. Among the three types of pattern recogni-10
tion techniques tested, cluster analysis (k-means), supervised learning (k-nearest neighbours), and11
dimension reduction, k nearest neighbours was found to perform well with respect to the human12
observer annotations.13

The goal of using whole safety indicators time series is to better understand collision pro-14
cesses and how interactions with and without a collision compare. Indeed, the work of Davis et al.15
(24) on a small set of traffic events suggests that the evasive actions undertaken by road users in-16
volved in conflicts may be of a different nature than the ones attempted in collisions. The work17
of Svensson and Hydén (10) provides some evidence that interactions with fairly high severities18
could be associated with improved safety because they are frequent and severe enough to create19
and maintain awareness among road users.20

Time-Series Clustering21
The objective of clustering is to classify the data into groups (clusters) with similar characteristics.22
Because the groups are not known, clustering is also called unsupervised classification. Many al-23
gorithms have been proposed in the machine learning literature (25), e.g. hierarchical, based on24
density, centroids, statistical distributions, etc. A time series is a data type that represents a se-25
quence of observation vectors X(t) = [x1(t), ...,xn(t)] as a function of time t, usually at discrete26
instants. Time series can be univariate (one variable per observation, n = 1) or multivariate (many27
variables per observation, n ≥ 2). The readers are referred to (26, 27) for surveys of clustering28
methods for time series data. Among the different algorithms developed in various domains, most29
attempt to reduce the dimensionality of the data to enhance the clustering performance. For exam-30
ple, Vlachos et al. (28) used k-means clustering incrementally at different levels (resolution) based31
on discrete wavelet transformation (DWT) decomposition.32

The key component of many clustering methods is the measure of the similarity or dis-33
tance between pairs of elements in the series. The Euclidean distance is popular, but it requires34
that both time series have the same length and it is sensitive to distortions (e.g. shifting along the35
time axis) and noise. The development of elastic distance and similarity measures, such as dy-36
namic time warping (DTW) and longest common sub-sequence similarity (LCSS), overcome the37
previous drawbacks. Both DTW and LCSS are implemented using dynamic programming. DTW38
attempts to find the best alignment between two time series by minimizing the distance between39
them. Conversely, LCSS finds the length of the longest matching sub-sequence by comparing ev-40
ery point of the two time series using a given matching method. Morris and Trivedi (29) evaluated41
different similarity measures (HU, PCA (Principle Component Analysis), DTW, LCSS, PF (Picia-42
relli and Foresti (30)), Modified Hausdorff) and clustering methods for trajectories as a first step43
to understand road user behaviour. After tests on six different datasets, the authors concluded that44
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LCSS was consistently the top performer.1
A relevant example for transportation of multivariate time series clustering is trajectory2

clustering which is done in surrogate safety analysis (17) and robotics applications. The objective3
is to cluster a dataset of observed trajectories into the main motion patterns. Bennewitz et al.4
(31) learnt the motion patterns of people in a scene using the Expectation Maximization (EM)5
algorithm, which enabled a robot to update its behaviour accordingly. Hu et al. (32) modelled road6
user activities with a fuzzy self-organizing neural network. One of the main applications is future7
motion prediction. Recently Morris and Trivedi (33) proposed a 3-stages hierarchical learning8
framework to analyze object activities and to predict future activities, as well as to detect abnormal9
events. The authors used LCSS as a similarity measure and spectral clustering algorithm (34) for10
the trajectory clustering.11

PROPOSED APPROACH12
Real time series from transportation will have varied lengths. This is the case for the analysis13
of safety indicators investigated in this paper. The choice is made to avoid pre-processing the14
data that would introduce distortions and may lead to loss of information for example through15
re-sampling. Methods that can deal with the data as it is, without pre-processing, are therefore16
preferred. Among the various such methods, the LCSS is favoured as it is flexible and can be17
adapted to specific purposes.18

The Aligned Longest Common Sub-sequence19
Let X = [X(t1), ...X(tn)] and Y = [Y (t1), ...Y (tm)] be two time series of respective length n and m of20
safety indicators characterizing two interactions (the series may be multivariate, e.g. if concatenat-21
ing several indicator measurements at each instant). Let Head(X) be the series [X(t1), ...X(tn−1)].22
Given a real number δ > 0 and a matching function match for the elements of the series (e.g. for23
univariate series and a given real number ε > 0, dε(a,b) is true if |a− b| ≤ ε , f alse otherwise),24
the length LCSδ ,match(X ,Y ) of the longest common sub-sequence is computed as25

• 0 if m = 0 or n = 0,26

• 1+LCSδ ,match(Head(X),Head(Y )) if match(X(tn),Y (tm)) is true and |n−m| ≤ δ ,27

• max(LCSδ ,match(Head(X),Y ),LCSδ ,match(X ,Head(Y ))) otherwise.28

This is typically computed in a matrix S using dynamic programming where Si, j is the LCS29
for the respective sub-sequences of X and Y [X(t1), ...X(ti)] and [Y (t1), ...Y (t j)]. The matrix is of30
size (n+1,m+1) and initialized to zero. The Si, j is then iteratively computed using the following31
algorithm:32

• for i ∈ [1, ...,n]33

– for j ∈ [max(1, i−δ ), ...,min(m, i+δ )]34

* if match(X(ti),Y (t j))35

· Si, j = Si−1, j−1 +136

* else37

· Si, j = max(Si−1, j,Si, j−1)38
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The maximum value of the matrix is the LCS. To be comparable, independently of the1
indicator respective lengths, the associated similarity measure LCSSδ ,match(X ,Y ) and distance2
DLCSδ ,match(X ,Y ) are typically derived as (11)3

LCSSδ ,match(X ,Y ) =
LCSδ ,match(X ,Y )

min(n,m)
(1)

DLCSδ ,match(X ,Y ) = 1−LCSSδ ,match(X ,Y ) (2)
(3)

The parameter δ was introduced in (11) to control how far in time elements of the two series4
can be matched. This is not suited for series that have different lengths, which is not tested in (11).5
As an example (plotted in FIGURE 1), LCSS4,d0.1([0,1, ...19], [10,11, ...19]) = 0 (no similarity)6
while [10,11, ...19] is an exact sub-sequence of [0,1, ...19]. A solution is to use a simpler version of7
LCS without δ (which is equivalent to choosing δ =+∞): LCSS+∞,d0.1([0,1, ...19], [10,11, ...19])=8
1 (maximum similarity). This causes other issues as it allows any value to match any other value9
irrespective of the rate of change in the series (however, the order in the series is always re-10
spected). Take for example the series X = [0,1, ...,19] and Y = [0,2, ...,18] (plotted in FIGURE 1):11
Y increases at twice the rate of X (with a step of 2 instead of 1), but is still a sub-sequence of12
X . If for a given application series evolving at different rates of change are considered dissim-13
ilar, computing LCSS without δ is inappropriate as this example shows: LCSS+∞,d0.1(X ,Y ) = 1,14
while LCSS1,d0.1(X ,Y ) = 0.2. Two other examples for two safety indicators, distance and TTC,15
are showed in FIGURE 3 and illustrate how similarity is over-estimated by the traditional LCS16
computation, while a finite δ does not allow to compute the similarity of the series because they17
are most similar parts must be aligned.18

It follows that the existing formulations of the longest common sub-sequence, with or with-19
out δ , are insufficient to measure the similarity of series if the series are simply shifted with respect20
to each other or if series with different rates of change should be considered different. That is why21
a new similarity measure is introduced that finds the best alignment of two series while taking into22
account a finite δ , allowing to take into account the rates of change. The length ALCS of the aligned23
longest common sub-sequence is computed by simply shifting the two series with respect to each24
other, i.e. by adding an integer parameter shi f t to the LCS computation (replacing the condition25
|n−m| ≤ δ by |n−shi f t−m| ≤ δ ) and taking the maximum LCS for all possible shi f t values. The26
corresponding aligned similarity measure ALCSS and distance DALCS are defined accordingly.27

Another benefit is to use the longest common sub-sequence itself. The indices correspond-28
ing to the elements of the series that are matched to obtain the longest common sub-sequence are29
obtained by “decoding” the process of the computation of the LCS. For example, the longest com-30
mon sub-sequence of series X = [1,3,5,6,7] and Y = [1,2,3,4,6,7,8], using d0.1 and finite δ , are31
respectively [0,1,3,4] and [0,2,4,5] meaning that the element in position 0 of X matches element 032
of Y , element 1 in X matches element 2 of Y , etc. From these indices can be computed the average33
difference of the corresponding indices which corresponds to the “optimal” alignment of one series34
with respect to the other. The alignment corresponding to the ALCS is obtained by applying the35
shi f t corresponding to the maximum LCS to the optimal alignment of the longest common sub-36
sequence indices. This is very useful to visualize the data and validate the similarities: FIGURE 237
shows the alignment obtained for two TTC indicators considered completely similar if aligned and38
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FIGURE 1 Examples of simple series that illustrate the advantages of using a finite δ and
aligned longest common sub-sequence. The series in each plot have maximum similarity if
using δ =+∞. This is desired in the plot on the left since it is an exact sub-sequence, but not
on the right if the rate of change is taken into account.
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FIGURE 2 Example of alignment of two very similar TTC indicators (LCSS2,d0.2 s = 0.2 and
ALCSS2,d0.2 s = 1).

barely similar otherwise (δ = 2 and d0.2 s). The distance and TTC indicators are also aligned in1
FIGURE 3: these examples of safety indicator profiles should not be considered similar, at least2
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not to the degree implied by the LCSS with infinite δ .1
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LCSS2 0.35 0.12
ALCSS2 0.42 0.42

FIGURE 3 Examples of pairs of profiles for the interaction distance and TTC indicators that
are more similar using LCSS with infinite δ than using ALCS and a finite δ . The matching
function used is dε with ε = 1 m for the distance indicator and ε = 0.2 s for the TTC indicator.
The series are aligned according to the aligned longest common sub-sequence.

Clustering Method2
The primary goal of this work is to compare road user interactions, characterized by a set of3
continuous safety indicators. Choosing a data representation and a similarity method rules out4
some clustering methods. The choice of keeping the indicators in their original shape with variable5
lengths rules out for example classical clustering algorithms such as k-means since the concept of6
a centroid is not defined. All the clustering algorithms that operate on a similarity matrix could7
be used. Several were investigated: spectral clustering was in particular tested at length and used8
in a first version of this work (35). The method is fast and takes as only input the predetermined9
number of groups. Finding the number of clusters by trial and error proved to be a challenge, and10
the resulting clusters were not always easy to interpret.11

The algorithm used for the results presented in this paper is a slight variation of the al-12
gorithm previously developed to cluster motion patterns (17). This type of algorithm trades the13
parameter of the number of clusters for a maximum distance or minimum similarity between in-14
stances of the same cluster: when a new instance is to different from the existing clusters, a new15
one is created for it. The other idea is to use the original data as representatives, or prototypes, for16
each cluster. That provides a visual and more interpretable representation of each cluster. The last17
idea is to favour “long” instances, in this case indicators with long time periods of observation.18
This is done in two ways: first by sorting the indicators according to their length, to start consid-19
ering first the longest indicators, and second by keeping the longer prototype indicator when two20
cluster are merged. This solves partially the problem of dependency of the results to the algorithm21
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initialization which is a well-known limitation of many clustering algorithms such as k-means1
(initialization of the cluster centroids) and of the one proposed in (17). The algorithm parameter2
is therefore the minimum similarity for two indicators to be in the same cluster: when learning3
prototypes, an indicator will be added as a new prototype if its maximum similarity to all existing4
prototypes is lower than the parameter.5

EXPERIMENTAL RESULTS6
The proposed method to cluster interactions and their safety indicators is tested on a large dataset7
of 295 traffic videos of collisions and conflicts between motor vehicles collected at an intersection8
in Kentucky. This unique dataset has already been used in past studies (2), most notably in the9
first paper that compared the characteristics of interactions with and without a collision (9). The10
definition of conflicts used by the people who collected and sorted the data is unknown: a visual11
review confirms that most match the accepted definition, but will be referred to as interactions12
without a collision.13

As shown in (2), an interaction can be well described by several symmetrical indicators14
based on speed and positions independently of the road user absolute positions. The indicators15
characterize one road user’s motion with respect to the other, as if it was stationary. These indi-16
cators based on positions and speed are: the distance of the road users’ centroids, the minimum17
distance separating the road users (from the feature-based tracking algorithm), the speed differen-18
tial (the norm of the velocity difference), the angle of the velocities, and the collision course angle19
(the angle between the velocity difference and the vector the links the road users’ centroids). To20
these indicators are added two safety indicators, TTC and probability of collision, calculated in21
(2) using motion prediction methods based on prototype trajectories representing the main motion22
patterns.23

Indicator Threshold ε Minimum Number
Clustering Similarity of Clusters

Distance (Dist) 1 m 0.3 6
Speed differential (SD) 1.5 m/s 0.4 4
Velocity angle (VA) 0.15 rad 0.4 4
Time to collision (TTC) 0.2 s 0.3 4
Probability of Collision (PoC) 0.1 0.5 6

TABLE 1 Thresholds ε for dε used in the computation of the aligned normalized similarity
ALCSS with δ = 2, with the minimum similarity used for clustering and the resulting number
of clusters.

The choice is made for this study to cluster the interactions based on each indicator sep-24
arately, for the following ones: distance, speed differential, velocity angle, TTC and probability25
of collision. For each indicator, a threshold is chosen by trial and error to match the profiles us-26
ing the aligned normalized similarity ALCSS with δ = 2. The matching function is dε with the27
thresholds ε listed in TABLE 1. An additional criteria is added to remove very short indicators that28
do not contain much information (if not favouring longer indicators in the clustering algorithm,29
the shortest indicators would tend to be the most similar to the others as they can easily match at30
least some sub-sequence of a long indicator). The minimum length is 10 frames, i.e. 0.67 s, and31
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actually applies only to safety indicators since they may not be computed for all instants. The1
others can be computed as long as the two road users co-exist in the scene. The software code2
used to compute the similarities, the clustering algorithm and the results presented in this paper are3
available in the open source Traffic Intelligence project (6) and on the page dedicated to this paper4
(http://nicolas.saunier.confins.net/data/saunier14trb.html).5

The choice is also made to not display and analyze clusters with too few indicators. The6
minimum number in the following results is 5 instances, including the prototype. Different min-7
imum similarities for clustering were tested by trial and error for the different indicators and are8
listed in TABLE 1. For all figures from 4 to 8, each cluster prototype is plotted using dots. Interac-9
tions with and without a collision are displayed respectively in red and blue. The numbers beside10
each cluster number are in order: the percentage of collisions, the number of collisions and the11
number of indicators in the cluster.12
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FIGURE 4 Clusters of the distance indicators.

The 6 clusters of distance indicators are plotted in FIGURE 4. There are quite different13
profiles, from almost flat in cluster 3 to increasing in cluster 5 to decreasing then flat (clusters 214
and 4) or increasing again (clusters 1 and 6). These clusters correspond to varying proportions15
of collisions: the clusters 2 and 4 contain the most collisions and have therefore expected shapes16
where the distance remains 0 or close to 0 after the collision. It is however remarkable that a17

http://nicolas.saunier.confins.net/data/saunier14trb.html
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majority of the interactions in these clusters do not end up in a collision. Clusters 1 and 6 seem1
to correspond to some sort of evasive action since the distance decreases (the road users are on a2
collision course), then increases again once the road users start reacting to avoid the collision. The3
collisions in cluster 5 may correspond to situations where the road users continue moving after the4
shock. The rate of change differs considerably between the clusters.5

The 4 clusters of SD indicators are plotted in FIGURE 5. The shapes are quite distinctive6
and seem relatively homogeneous for each cluster. There is a pattern relating the proportion of7
collisions to the highest speed differential: the higher the proportion, the higher the maximum8
speed differential. This is related to attempts by road users to avoid the collision, which are stronger9
in collisions. The shape of cluster 1 is particularly striking and could be related to rear end or10
parallel interactions at similar velocities, followed by a road user turning or changing lane, which11
puts the road users on a collision course, followed by a return to the initial conditions or more12
evasive actions with higher speed differential.13
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FIGURE 5 Clusters of the SD indicators.

The 4 clusters of VA indicators are plotted in FIGURE 6. The VA indicator is very useful14
to identify interaction categories, e.g. rear-end, side, head-on, etc., which does change with each15
instant and is typically not recorded in collision reports. Interactions in cluster 4 are thus side16
interactions, which evolve as the road users try to avoid each other. Cluster 1 contains even more17
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collisions and corresponds to rear-end and parallel interactions where the VA increases (some1
attempt at turning or changing lane) then comes back to 0. The clusters 2 and 3 are more difficult2
to distinguish. The two must contain situations that start as parallel or rear-end interactions, but3
evolve into side interactions, with different angles. One cannot miss in any case some important4
differences in profiles, especially at the beginning in clusters 1 and 2. Trying to obtain more5
clusters may yield a finer understanding of these clusters.6
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FIGURE 6 Clusters of the VA indicators.

The 4 clusters of TTC indicators are plotted in FIGURE 7. It must be noted that there are7
only 247 interactions for which TTC can be computed for at least 10 frames. One cannot miss8
that the TTC indicators are much noisier than the previous indicators. This is related to the quality9
of the data and the more complex process of computing TTC. Although the motion patterns allow10
to compute the TTC at more instants, more trajectory prototypes could have made the measures11
smoother. Most TTC profiles decrease with time as they are expected for collisions and conflicts.12
The clusters 1 and 2 are very interesting because they look similar at first sight. But the proportion13
of collisions in cluster 2 is consistent with the profile of its prototype indicator which falls at a14
seemingly constant rate as a function of time and reaches almost 0 s. On the contrary, there are15
few TTC measures below 0.5 s or even 1 s in cluster 1. There is more variability in the rate of16
decrease at the beginning and most profiles increase again after reaching their minimum, which17
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is consistent with a high proportion of interactions without a collision. Cluster 3 contains mostly1
collisions, with a higher rate of decrease than cluster 2 which explains why they are in different2
clusters. Finally, cluster 4 contains only one collision and has fairly constant, noisy, TTC values3
above 1.5 s.4
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FIGURE 7 Clusters of the TTC indicators.

The 6 clusters of PoC indicators are plotted in FIGURE 8. It must be noted that there are5
only 260 interactions for which PoC can be computed for at least 10 frames. PoC is also a noisy6
indicator, depending as TTC on motion prediction methods and the existence of potential collision7
points. There are two main clusters, 1 and 2, and 4 smaller ones. If ranking the cluster from their8
maximum PoC, it goes from cluster 3, to cluster 5, then 4 and 6, and finally 2: the first 4 have few9
collisions, while the last one, cluster 2 has the highest proportion and the highest maximum values10
reaching 0.8, which is consistent. On the other hand, cluster 1 is more difficult to interpret: it is11
the largest cluster, contains mostly interactions without a collision, and seems to have two peaks.12
Whether this is related to noisier interactions without a collision or an actual variation of PoC is13
unclear.14

To sum up the observations, the methods could produce varying numbers of clusters for15
each indicator that can be interpreted. There are two main results for all indicators. First, there16
are clusters with very few collisions, e.g. cluster 4 for the SD indicator and cluster 4 for the TTC17
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FIGURE 8 Clusters of the PoC indicators.

indicator, which, as was noticed in the previous study (9), seems to indicate that some interactions1
without a collision are not similar to any collisions. This suggests therefore that the factors that are2
associated with these interactions are different from the ones associated with collisions. Second,3
it is also clear that even in the clusters with the highest share of collisions (45.3 % for cluster 2 of4
the PoC indicator), there is always a majority of interactions without a collision that have similar5
processes to the collisions and are therefore good candidate predictors of these collisions. Finally,6
there is also a clear trade-off between having few clusters with some degree of variability, which7
can be seen in several clusters such as cluster 1 for the SD indicator, and more numerous and more8
homogeneous clusters. This choice is up to the analyst and highlights the flexibility of the method9
as an exploratory tool.10

CONCLUSION11
This paper has introduced a new similarity measure built upon the longest common sub-sequence12
that is sensitive to the rate of change of time series and is shown to be adapted to the clustering13
of several interaction indicators, including safety indicators such as TTC and the probability of14
collision. The number of resulting clusters is relatively small and can be easily interpreted in most15
cases. The results yield further credibility to the main hypothesis of surrogate safety analysis that16
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some interactions without a collision have similar processes as collisions and could be used as1
predictors. It also strengthens the observations made in (9) that not all interactions should be used2
for surrogate safety analysis, as can be seen for almost each indicator. Another contribution of3
this work is to release all the necessary code and data samples to allow true reproducibility of the4
presented work.5

There is considerable room for further research. The main goal is to cluster interactions6
with and without a collision based on all, or at least several, indicators simultaneously, i.e. by7
evaluating the similarity of interactions at a given instants through the similarity of all its indicators8
at this instant. It is hoped that very strong similarities can thus be identified. Finally, this method9
can be applied to other time series in transportation, especially in safety, such as the large datasets10
produced by current naturalistic driving studies.11
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