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ABSTRACT 

In order to improve road safety, it is necessary to better understand collision processes, i.e. 

the chains of events that lead to collisions. Among the most important benefits, more efficient 

countermeasures can be found to target causes and factors known to lead to collisions. This 

would also help develop more reliable surrogate safety measures based on traffic events 

without a collision that have stronger links to collisions. This paper reports on the first phase 

of a project relying on microscopic data extracted from video sensors and on data mining 

techniques to identify patterns in a dataset of traffic events with and without a collision. This 

approach is demonstrated on a dataset collected in Kentucky of 295 traffic events, 

constituted of 213 conflicts and 82 collisions. Using the k-medoid algorithm, its clustering 

yields three groups with distinct characteristics, especially related to speed and the type, or 

lack, of evasive action. The most important attributes that determine the traffic event 

outcome (collision or not) are identified through a logit model.  

RESUME 

Dans le but d‟améliorer la sécurité routière, il est nécessaire de mieux comprendre les 

processus de collision, i.e. les chaînes d‟événements qui mènent à la collision. Parmi les 

bénéfices, de meilleures mesures pourraient être prises pour cibler les causes et les facteurs 

connus pour mener à des collisions. Cela aiderait aussi à développer des mesures 

substitutives de sécurité basées sur des événements sans collision dont les liens à la 

collision sont connus. Cet article décrit la première phase d‟un projet reposant sur des 

données microscopiques extraites de capteurs vidéo et sur des méthodes de fouille de 

données afin d‟identifier des régularités dans un ensemble d‟événements de la circulation 

avec et sans collision. Cette approche est appliquée à un ensemble de données collectées 



au Kentucky comprenant 295 événements, dont 213 conflits et 82 collisions. Leur 

classification non-supervisée à l‟aide de l‟algorithme des k-médoïdes produit 3 groupes avec 

des caractéristiques distinctes reliées à la vitesse et au type, ou à l‟absence, de manœuvre 

d‟évitement. Les attributs les plus importants pour déterminer le résultat d‟un événement 

(collision ou pas) sont identifiés à l‟aide d‟un modèle logit. 

 

INTRODUCTION 

It is difficult to overstate the terrible cost of road collisions all over the world, and in particular 

in developing countries where the toll is expected to continue rising for the coming 

decades (1). While many general factors are known to decrease safety, i.e. increase the 

probability of a road collision (e.g. drunk driving) and the severity of collision outcomes (e.g. 

speed, lack of use of vehicle safety features such as safety belts, children seats), the actual 

processes that lead to collisions are not well known in details. The main reason is that 

collisions and the chains of events that lead to them (often called pre-crash events) are rarely 

observed.  

Recent advanced data collection techniques may help in that regard. Video analysis in 

particular has generated a lot of interest for transportation applications: rich data, from the 

macroscopic variables flow, density and speeds to complete road users‟ trajectories, can 

thus be automatically extracted over large areas. Such a tool was developed at the 

University of British Columbia (2) and used to compute surrogate measures of safety such a 

more robust time to collision (3) and applied to various studies, including pedestrian-vehicle 

interactions and the before and after study of a pedestrian scramble phase (4). However, 

very large amounts of data may be generated from video data, in particular all road users‟ 

trajectories. Data mining provides the tools to efficiently explore, interpret and extract 

knowledge from large amounts of data.  

This work relies on the assumption of the existence of a safety hierarchy (5), i.e. a framework 

that places all traffic events on a continuum with collisions at the top, undisturbed passages 

or “safe traffic events'” at the bottom and traffic conflicts in between. The position of a traffic 

event in the safety hierarchy measures its proximity to a potential collision. Significant effort 

has been invested to develop techniques to collect and link to collisions the specific class of 

the most severe traffic conflicts. It is believed that the observation of all traffic events can 

provide a complementary safety diagnosis, more complete than can be done using collision 

data alone. It is in particular a way to gain more knowledge about the factors and processes 

that lead to collisions.  

The objective of this work is to better understand collision processes using microscopic road 

user data (trajectories). The success of this research would yield many benefits: 

 more efficient countermeasures could be found to target causes and factors known to 

lead to collisions; 

 more reliable surrogate safety measures could be developed based on traffic events 

without a collision that have stronger links to collisions. 



The second point is critical as (6) suggests, on a small set of traffic events, that the evasive 

actions undertaken by road users involved in conflicts may be of a different nature than the 

ones attempted in collisions. 

This paper presents part of the work done in a larger research project that aims to better 

understand collision processes and the relationship of interactions with and without a 

collision. This work relies on a large set of traffic events composed of conflicts and collisions 

and various statistical and data mining techniques to identify patterns in the dataset and 

classify interactions. To the authors' knowledge, this work is unique in the size of the 

analyzed dataset and the actual observation of safety-related events. The organization of the 

rest of the paper is as follows: related work, proposed approach, dataset description, results 

and conclusion.  

RELATED WORK 

There has been a considerable amount of research to estimate safety models as a function 

of explanatory variables describing the transportation system: the road, the vehicle and the 

driver. These safety models, also called a safety performance functions (SPF), typically take 

the form of an equation linking the expected number of collisions to a set of variables and 

rely on historical collision data. These models are at the core of the recently published 

Highway Safety Manual (HSM).  

Historical collision data obtained from insurance and police reports is ill-suited for the 

analysis of collision processes (4). Other methods are required: in-depth accident analysis 

and naturalistic driving studies may help to better understand collision factors and processes. 

In-depth accident analysis relies on detailed reconstitutions to investigate collision factors (7) 

and as such may provide some information on the chain of events that led to the collision. 

However, they share many shortcomings with methods based on historical collision data: 

they provide only limited amounts of data, at a higher cost, they rely on reconstitutions in 

which the collision processes may be only guessed at and they still require to wait for 

collisions to occur. Naturalistic driving studies rely on the continuous collection of data on a 

road user, his driving behaviour, the vehicle and the environment, over extended periods of 

time (8). Very large projects, e.g. in the Strategic Highway Research Program 2 Safety 

research area (9), are in the making and should provide unprecedented information. An 

advantage will be the observation of all traffic events, not only collisions. Nevertheless, 

naturalistic driving studies also have limitations: they typically provide detailed information 

only on one of the road users involved in a safety-related event; vehicle instrumentation is 

costly and requires access to the vehicle, while fixed video cameras provide external non-

intrusive monitoring of all traffic events and their context at a lower cost. 

There has been a strong renewed interest in proactive methods for road safety analysis (10), 

the most famous being the traffic conflict technique (5) (11). Although mixed validation 

results, issues of cost and reliability have hindered their development, they have been 

integrated into traditional approaches, including the HSM, providing complementary 

information and alternative methods. The framework of the safety hierarchy, developed in the 

context of traffic conflict studies, is the basis for more recent approaches that take into 

account all road users' interactions, not only the most severe traffic conflicts, for more 

complete and robust diagnoses (3) (5). To understand collision processes, it is necessary to 



expand the approach and use automated data collection techniques to provide sufficiently 

large amounts and objective microscopic data.  

Studying collision processes can be helped by good classifications, as they are based on 

some form of similarity measure between collisions and the processes that lead to them. One 

of the best-known classification studies was published in 1993 with the goal of helping the 

evaluation of collision avoidance strategies (12). In a more recent work (13), the authors 

recommend to “use relatively homogenous class of accidents, all involving the same 

manoeuvre or „accident mechanism'” to study behavioural factors in road collisions.  

Machine learning models, like artificial neural networks (ANN) and support vector machines 

(SVM) have been widely applied to estimate SPFs. This project however requires extracting 

patterns from data and can be achieved through data mining techniques (14). These include 

classification, using for example decision trees that can be interpreted, as opposed to the 

“black box'” nature of ANNs and SVMs, and clustering, i.e. finding groups through some 

similarity measure, using for example the k-means algorithm. Data mining has been used for 

the analysis of databases containing only collisions, without any microscopic data, and the 

readers are referred to (15) for a review. Despite significant use of data mining techniques to 

analyze collision data, it is apparent that the lack of microscopic data describing traffic events 

with and without a collision limits the scope of the collision factors that can be identified and 

the analysis of the similarities of traffic events of different severities.  

PROPOSED APPROACH 

Preliminary work has already been done to cluster interactions with and without a 

collision (15). Interactions between pairs of vehicles are described by indicators based on the 

two vehicles' speeds and speed differentials computed from the road users' trajectories, the 

type of evasive action and other vehicle and contextual information (see Table 1 and Table 

2). The interaction dataset described below was mined for patterns using two well-known 

data mining techniques: decision trees (namely the C4.5 algorithm) and the k-means 

algorithm (14). Association rules were tried, but did not yield any strong result.  

A decision tree was learnt to predict the outcome of the interaction (collision or not) from the 

other interaction attributes. The result highlighted the importance of evasive actions in the 

interaction outcome (more than 90 % of interactions where no evasive action was attempted 

resulted in a collision), as well as speed differential for interactions where one of the road 

users braked. 

The number of clusters in the dataset was obtained using sequentially the k-means algorithm 

and a hierarchical agglomerative clustering (HAC) method. The “best” number of cluster is 

given from the HAC dendogram where the biggest step is observed. Three clusters were 

found to better segment the data. The dataset of the interactions was then partitioned in 

three clusters using only the speed information as a rough proxy for the road users‟ relative 

interacting movements, with the k-mean method. Two types of clusters were obtained: 

 two mixed clusters of similar interactions with and without a collision, 

 one pure cluster with very few collisions in the cluster. 

The underlying assumption is that interactions without a collision in mixed clusters can be 

used as surrogates for the collisions in the same cluster, while interactions without a collision 



in the pure cluster cannot be used as surrogates to any type of collision (the last possibility, a 

pure cluster with no or very few interactions without a collision, would indicate that no 

interaction should be used as surrogates to the collisions in the cluster). In the analyzed 

dataset, the conflicts with the lowest speeds do not seem similar enough to many collisions 

and therefore should not be used for surrogate safety analysis. The two mixed clusters have 

distinct characteristics, in particular regarding the interaction categories (while this 

information was not used for clustering).  

The present study includes more detailled analysis about interactions (see Figure 1). The 

work described in this paper relies on the use of all interaction attributes, not only speed 

information, to build a classification of all interactions and identify factors that may favour 

collisions. The distance used to compare interactions is also enhanced to better take into 

account various levels of similarities of the interaction categories (e.g. two same direction 

interactions, say rear-end and lane change, are different but not as dissimilar as a same 

direction and a side interaction, and will have an intermediate distance). Also the k-medoid 

clustering algorithm is now employed: it is a variation on the k-means algorithm where the 

cluster centroids are constrained to actual elements in the dataset. Following on the previous 

work, and after running similar tests to determine the number of clusters, the same 

number (3) is used. The three clusters produced by the k-medoid algorithm are finally 

analyzed and described. A more traditional statistical technique, a logit model, is also used to 

identify the most important attributes that determine the interaction outcome. 

 

Figure 1 Methodology 

DATASET DESCRIPTION 

This work relies on the same dataset of interactions with and without a collision that was 

used in (3) and (15). The dataset was collected at a single signalized intersection in 

Kentucky and consists of 311 traffic events, conflicts and collisions. Video recordings were 

kept for a few seconds before and after the sound-based automatic detection of an 

interaction of interest. Unfortunately, some information is missing about this dataset, in 

particular the exact operational definition of conflicts. The existence of an interaction or its 

severity is not always obvious in some videos. Also regular traffic conditions (without conflicts 

or collisions) are not present. After some clean-up, 295 traffic events remain, split between 

213 conflicts and 82 collisions. The interactions recorded in this dataset involve only 

motorized vehicles. Finally, the quality of the extracted trajectory information is limited by the 
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quality of the video data: limited resolution, compression artefacts, weather and lighting 

conditions. Despite these challenges, the microscopic data of the road users involved in the 

traffic events could be extracted, as well as other vehicle and contextual information: the 

attributes describing the interactions are described in Table 1 and Table 2, as well as the 

interaction categories in Figure 2. Most of the information was manually obtained, except for 

the day and microscopic data.  

Categorical Attributes  Values  

Type of day  weekday, week end  

Lighting condition daytime, twilight, night-time 

Weather condition normal, rain, snow 

Interaction category same direction (turning left and 
right, rear-end, lane change), 
opposite direction (turning left 
and right, head-on), side 
(turning left and right, straight) 
(see Figure 2) 

Interaction outcome conflict, collision 

Table 1 Categorical interaction attributes 

Numerical Attributes  Units  

Road user type 
passenger car - van, 4x4, SUV - bus - truck (all 
sizes) - motorcycle - bike - pedestrian 

number of road users per type  

Type of evasive action 

No evasive action - Braking - Swerving - 
Acceleration 

number of evasive actions per 
evasive action 

Road user origin 

4 street origins 
number or road users per 
origin 

3 attributes from the speed differential ∆v 
(minimum, maximum and mean, denoted 
respectively ∆vmin, ∆vmax and ∆v) 

km/h 

6 values from the road users‟ speeds (minimum, 
maximum and mean for each, ordered, denoted 
respectively smin1, smax1, s1, smin2, smax2, and s2)  

km/h 

Table 2 Numerical interaction attributes 

Video 
Number 

Day Month Year Hour Lighting 
Condition 

Type of 
Day 

Weather 
Condition 

107031 7 1 2003 13h11 daytime weekday normal 

112050 12 1 2005 00h39 night-time weekday normal 

114021 14 1 2002 08h55 daytime weekday normal 

114022 14 1 2002 21h55 night-time weekday normal 

117051 17 1 2005 11h07 daytime weekday normal 

Table 3 Dataset excerpt showing a few interactions and attributes 



Table 3 shows an excerpt of the interaction dataset that interaction number 114021 occurred 

on 14th January 2002, at 08h55, during daytime, a weekday, with normal conditions.  

 
Figure 2 Hierarchy of interaction categories 

RESULTS 

Classification 

Table 4 summarizes the characteristics of the three clusters obtained with the k-medoid 

algorithm, based on the analysis of the attribute importance and systematic examination of 

their distribution per cluster and in the whole dataset (see Figure 3 to Figure 8). The road 

user origin attribute is not used as it is not a generic characteristic of interactions: it could 

yield insight on that particular intersection, but not about collision processes.  

While the whole dataset consists of 72.2 % of conflicts and 27.8 % of collisions, the 

proportions vary in the clusters (see Figure 3). Cluster 2 contains a larger proportion of 

collisions, which is 48.5 %. The conflicts are preponderant in cluster 3 where they constitute 

84 % of the observations whereas the collisions represent only 16 %: cluster 3 could be 

considered pure. Cluster 1 consists of a mixture of collisions and conflicts in proportions 

which are appreciably similar to the whole dataset. 
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 CLUSTER 1 CLUSTER 2 CLUSTER 3 

NUMBER OF 
INTERACTIONS 

168 33 94 

SPEED 
DIFFERENTIALS 

Lowest speed 
differentials 

Highest speed 
differentials 

Medium speed 
differentials 

SPEEDS Lowest to medium 
speeds alternating with 
cluster 3 

Highest speeds Lowest to medium 
speeds alternating with 
cluster 1 

INTERACTION 
OUTCOME 

30.4 % of collisions 
79.6 % of conflicts 

48.5 % of collisions 
51.5 % of conflicts 

16.0 % of collisions 
84.0 % of conflicts 

INTERACTION 
CATEGORY 

45.8 % Same direction 
turning left  
44.6 % Same direction 
turning right  

51.5 % Side straight  
33.3 % Same direction 
turning right  

60.6 % Side Straight  
18.0 % Same direction 
turning left  
17.0 % Same direction 
turning right  

TYPE OF ROAD 
USERS 

59.7 % Passenger car 
30.9 % 4X4, VAN, VUS 
8.6 % Truck  

55.4 % Passenger car 
44.6 % 4X4, VAN, VUS 

53.4 % Passenger car 
41.1 % 4X4, VAN, VUS 
5.5 % Truck  

TYPE OF 
EVASIVE 
ACTIONS  

41.0 % No evasive 
action 
45.4 % Braking 

59.6 % No evasive 
action 
36.2 % Braking 

22.9 % No evasive 
action  
61.1 % Braking 
15.3 % Swerving 

TYPE OF DAY 59.5 % Weekday 
40.5 % Week-end 

30.3 % Weekday 
69.7 % Week-end 

78.7 % Weekday 
21.3 % Week-end 

Table 4 Cluster characteristics (the analysis proved inconclusive for all attributes that 

are not included in the table) 

 

Figure 3 Comparison of the interaction outcome in the clusters (numbers 1 to 3) and 

the whole dataset 

All speed attributes (average, minimum and maximum speeds for the two road users 

denoted, as well as speed differentials) are the largest overall in cluster 2 while cluster 1 has 

the smallest speed differential values, cluster 3 has the medium speed differential values and 

these two clusters share the lowest and medium speed values (see Figure 4 and Figure 5).  

30,4%

48,5%

16,0%
27,8%

69,6%

51,5%

84,0%
72,2%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 dataset

Conflict

Collision



 

Figure 4 Comparison of the speed differential attributes in the clusters (numbers 1 to 

3) and the whole dataset 

 

Figure 5 Comparison of the speed attributes in the clusters (numbers 1 to 3) and the 

whole dataset 
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Figure 6 Comparison of the interaction category in the clusters (numbers 1 to 3) and 

the whole dataset 

Regarding the interaction categories (see Figure 6), for which the distance used in the 

clustering algorithm was specifically designed, the proportions are more clear-cut. In 

particular the side straight interactions are almost all in clusters 2 and 3, which correspond to 

the most unbalanced cluster with respect to interaction outcome, with respective majorities of 

collisions and conflicts. The majority of the overall same direction category is concentrated in 

cluster 1, which is again favoured by the special distance. It would mean however that the 

same direction interactions that are not in cluster 1 are more similar to the side straight 

interactions based on their other characteristics, e.g. speeds.  

 

Figure 7 Comparison of the type of evasive action in the clusters (numbers 1 to 3) and 

the whole dataset 
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The types of evasive actions in the clusters are also investigated (see Figure 7): no evasive 

action was undertaken in 59.6 % of the observations in cluster 2 while braking was the most 

common evasive action (36.2 %). The proportion of interactions where no evasive action was 

undertaken in cluster 2 is not surprising given that it has a higher than average share of the 

collisions. As expected, the situation is the opposite in cluster 3. The proportion of braking is 

more important in clusters 1 and 3, with 45.4 % and 61.1 % respectively.  

The last interesting attribute that appears to be related to the interaction outcome is the type 

of day (see Figure 8). Cluster 2 and 3 contain respectively 69.7 % and 21.3 % of weekends 

compared to 37.6 % in the whole dataset. The weekend may therefore have a link with the 

occurrence of collisions on this intersection. 

 

Figure 8 Comparison of the type of day in the clusters (numbers 1 to 3) and the whole 

dataset 

The proposed classification provides knowledge about the factors that may favour collisions, 
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prediction model where the expected number of collisions   is equal to the number 

of observed conflicts  multiplied by a coefficient α ( ), a first 

approach would be to estimate different α for different groups.  

Logit Model of Interaction Outcome 

After converting all nominal attributes to numerical ones (creating n-1 attributes for each 

nominal attribute that may take n values), a logit model that predicts the interaction outcome 

was computed via maximum likelihood using the open source econometrics software 
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correctly predicts the outcome of 90.2 % of all interactions and its McFadden coefficient of 

determination R2 is 0.5462.  

 Coefficient Std. Error z-stat Slope 

const -1.72947 1.28607 -1.3448  

Same direction 
turning left 

2.78372 1.04016 2.6763 0.439349 

Same direction 

turning right 

1.72514 1.0261 1.6813 0.244256 

Side straight 4.44196 1.34845 3.2941 0.757887 

Braking -4.1418 0.571796 -7.2435 -0.701337 

Swerving -2.67496 0.767919 -3.4834 -0.17601 

No evasive 

action 

1.41745 0.546812 2.5922 0.160854 

∆v -0.180444 0.0553516 -3.2600 -0.0208568 

s2 0.138837 0.0504446 2.7523 0.0160476 

Table 5 Logit model of interaction outcome (collision is 1, conflict 0) (the slope is 

computed at the mean) 

The model is consistent with the decision tree built in (15): the most important attributes 

determined by the decision tree, the type of evasive action, the average speed differential 

and the maximum average road user speed s2, all appear in the model, with the same, 

intuitively logical, sign:  

 Evasive actions are negatively correlated with collisions, while it is obviously the 

opposite for the absence of evasive action: braking has the strongest influence on the 

collision outcome (both by coefficient absolute value and by p-value).  

 The speed differential is also negatively correlated to collision, which may be related 

to the success of an evasive action, in particular braking as shown by the previous 

result of the decision tree.  

 The maximum average speed s2 is positively correlated, which may indicate the risks 

of collision carried by high speed.  

 New significant attributes are related to the interaction category. There is some 

variability in the results depending on the order of inclusion of the various categories, 

and the results are especially not stable, including the sign, for all the same direction 

categories. However, the side-straight category is consistently positively associated 

with collisions, which relates to the particular danger of this interaction category.  

CONCLUSION 

This work is the first step in a larger project that studies collision processes based on 

microscopic data. It demonstrates that useful relationships between interactions with and 

without a collision may be automatically analyzed using statistical and data mining 

techniques. This paper proposes a new classification of interactions with and without a 

collision that highlights the main similarities and differences, related mainly to speeds and 

speed differentials, interaction categories, and evasive actions. Such a classification paves 

the way for surrogate models of safety calibrated for the various types of interactions. The 



logit model of interaction outcome confirms previous results and allows quantifying the 

contribution of interaction characteristics and collision factors. 

It is difficult to draw strong conclusions based on this classification, given the dataset 

limitations. This work however demonstrates new techniques for the analysis of large 

datasets of traffic events that are bound to become more and more common as more such 

data becomes available, in particular with the ongoing naturalistic driving data collections (8).  
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