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ABSTRACT

Road collisions represent a worldwide pandemic which can be addressed through the improvement
of existing tools for safety analysis. The paper presents a refined probabilistic framework for the
analysis of road user interactions. In particular, the identification of potential collision points is
used to estimate collision probabilities and their spatial distribution can be visualized. A prob-
abilistic time to collision is also introduced, and interactions are categorized in four categories:
head-on, rear-end, side and parallel. The framework is applied to a large dataset of video record-
ings containing more than 300 severe interactions and collisions collected in Kentucky. The results
demonstrate the usefulness of the approach in studying road user behavior and mechanisms that
may lead to collisions.
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INTRODUCTION

The importance of improving the understanding of the mechanisms that lead to road collisions
cannot be overstated. Various approaches have been tried to achieve this task. An important
distinction is whether the analysis relies on microscopic data collected from the field. There is a
recent increase of interest in using traffic simulation for safety analysis (/} 2 3). One of the reasons
for this trend is attributed to the difficulty to collect adequate microscopic data, as stated in a recent
work (2):

“Ideally, it would be preferable to obtain measures of traffic turbulence [i.e. safety
performance] directly from field studies. However, such an approach [is] still not fea-
sible given that it would require real-time monitoring of vehicles in the traffic stream,
including those rare combinations of events when a crash is observed and this type of
information is not readily available”

This work attempts precisely to tackle the challenge of automatically monitoring all road
users, including pedestrians, and extracting their trajectories for safety purposes. The data is col-
lected using video sensors and computer vision techniques to process the video data (4).

A probabilistic framework was proposed in (3)). It relies on the concept of the safety hi-
erarchy, i.e. that there is a continuum of all road users’ interactions with collisions at the top,
undisturbed passages or ‘“‘safe interactions” at the bottom and traffic conflicts in between (6)). The
safety hierarchy is matched by a severity hierarchy, based on severity indicators that measure the
proximity of an interaction to a collision. It is thought that the observation of all interactions, and
traffic conflicts in particular, can be an alternative or complementary approach to analyze road
safety from a broader perspective than collision statistics alone. The widely accepted definition of
a conflict is “an observational situation in which two or more road users approach each other in
space and time to such an extent that a collision is imminent if their movements remain unchanged”
(7). The core concept of this definition is the collision course, and the fact that various chains of
events may lead road users to collide. This observation led to propose a probabilistic framework
to predict road users’ positions and evaluate their probability of collision. This paper refines and
expands the previous framework, adding more severity indicators, and applies it to explore a large
dataset of video recordings of collisions and conflicts.

The rest of the paper is organized as follows. The next section will cover briefly recent
work on safety modeling. The refined framework and formulation of the severity indicators are
presented in Section[d] The large video dataset of collisions and conflicts is explored in section [5
Section [6] concludes and proposes future research directions.

RELATED WORK
Road safety studies rely traditionally on historical collision data. As reported in (8), significant
effort has been put to develop a reference Highway Safety Manual (HSM): the main tools are
statistical models of observational data, using generalized linear models to describe baseline as-
sociations between collision frequency and observable road features, and the effect of counter-
measures is captured through empirically-determined collision modification factors. Yet there are
well-recognized problems of availability and quality associated with collision data. Collision data
is also intrinsically ill-suited to understand the mechanisms that lead to collisions.

An important concept to model is exposure (9). Recent work has shown that elementary
units of exposure can be developed on the basis of known aggregate measures, such as annual
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average daily traffic (/0). The framework is interesting and supports choices for the categories of
interaction made in this paper, but it is completely disconnected from microscopic data collected
in the field.

Davis and Morris expect that the statistical models proposed in the HSM “will be replaced
by models explicitly describing mechanisms underlying crash occurrence” and advocates simu-
lation models, in particular because those that “capture underlying mechanisms are usually able
to represent a richer and more detailed set of alternatives than are statistical models” (&). Using
microscopic traffic simulation for safety analysis is not a new idea (//), yet it has recently seen
renewed interest. A large project called Surrogate Safety Assessment Model (SSAM) was funded
by the Federal Highway Administration to develop a program to automate conflict analysis from
the vehicle trajectory data generated by traffic simulations (3). Two Ph.D. theses have been un-
dertaken on the topic (/, 2), demonstrating that microscopic traffic simulation may be used for the
estimation of road safety and performance effects of changes in the transportation system.

The limitation of traffic simulation is related to the difficulty to calibrate the models and the
suspicion that the models are too simple to replicate complex behaviors. In-field collection of data,
in particular of surrogate safety measures (/4), is necessary to tackle the problem and diagnose real
world situations like existing black spots. Such data is collected with various levels of automation.
Traffic conflict collection has been extensively studied since their first conceptualization in the
late 1960s, but is still mostly performed manually by on-site observers (6, /2, |/3). The extreme
value method is applied in (/) to estimate the frequency of right-angle collisions at signalized
intersections, relying on the post-encroachment time, which limits the categories of interaction
that can be characterized. |Davis et al.|outlined a causal theory and built a minimal model capable
of rigorously representing traffic conflicts and crashes, relying on the description of the evasive
action (/6). Yet there has been limited work relying on the automated collection of road users’
trajectories with the primary goal of safety analysis (/7 |/ |19, 20, 21} 22). This work and the
previous work on which it is built (4} 15) are unique in their attempt to develop automated systems
supporting a general framework for the analysis of road users’ interactions and their severity.

A PROBABILISTIC FRAMEWORK FOR SAFETY ANALYSIS

Moving Object Trajectories

Road users have a certain size, but are represented for simplicity by a point, e.g. their centroid.
The measurement of their position in space at each instant constitutes a trajectory. A trajectory is
a mapping from a finite set / C R (I is typically a finite set of time instants at regular intervals)
to R? (the two-dimensional plane) (23):

ICR =Rt T() = (x(t), y(¢))

The trajectory 71" of each road user U is measured for the time of its existence in a region
of interest. Let U(¢() represent the knowledge available about a road user U up to time ¢y, e.g.
its past n observed positions T'(t_,,)...T(t_1), T'(ty). Studying the probability of collision requires
the ability to predict road users’ future positions. Let Tto (t) be the prediction made at ¢, for the
position of U att > ¢y, 1.e. based on the knowledge available about U at t.

General Collision Probability
The probability at time ¢, for two road users U; and U; to collide is the probability of the event
Collision(U;, U;) of the two objects being at the same place at the same time at a later time ¢ > ¢,,.
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Let Proximity.(A, B) be a function mapping from R? xR? to {0, 1}, called the proximity function,
defined in the following way for a given distance d and threshold e,

1 ifd(A,B) <e
0 otherwise

Proxzimity.(A, B) = { (1)

The probability at time ¢, of a future collision for two road users U; and U;, denoted
P(Collision(U;, U;)|U;(to), Uj(to)), is the probability that there exists an instant ¢ > ¢, such
that Prozimity, (T, (t), Tj,(t)) = 1. It can be written using the complementary event that no
collision occurs at any instant ¢ > ¢, (an upper limit ¢; is added to take into account a reasonable
amount of time for the road users to collide during their passing through the scene),

P(Collision(U;,U;)|U;(to), U;(to)) =

t1
- / P(Prozimity.(Tyu, (), Ty (1)) = 0|Ui(t), Us (1)) dt )

to

In the following, the conditional part of the probabilities is dropped for simplicity of writ-
ing. The probability of non collision at ¢, i.e. of the proximity function Proximity, to be 0 at ¢, is
the joint probability of the road users being in positions at ¢ further than the given distance e, that,
assuming that the road users move independently, can be computed by

P(Prozimity. (T (0 Ty0(1) = 0) =

/ / T4 (t) = Ay) P(Tﬁ0 (t) = A,) (1 — Proximity.(A;, A;)) dA; dA; (3)
A;eR? JA;eR?

The independence assumption relies on the definition of traffic conflicts as interactions in
which a collision is imminent if the road users’ movements remain unchanged, i.e. if the road users
do not react to each other. If it is possible to draw from the distribution of possible future positions
for road users, the probability of collision may be computed by simulation, counting the number
of situations in which the proximity function is equal to 0.

Movement Extrapolation
Road users have particular dynamics that can be described by prior knowledge of their motion
model and empirical knowledge learnt from observations. This work relies on learning the distri-
bution of road users’ trajectories from observations (24), which can be used to predict road users’
future positions with associated probabilities. More precisely, an extrapolation hypothesis H is de-
fined by a trajectory I C R — R? : ¢ — H(t) = (z(t),y(t)), derived from an observed prototype
trajectory by translation and resampling, with a probability P(H) of the road user following the
extrapolation hypothesis. Each road user U; can be assigned at ¢, a finite set of M, extrapolation
hypotheses { H; 1, ..., H; ar, }, such that 3, ., P(H;m) = 1. For Ny road users existing at time
to, the sample space is the Cartesian product { Hy 1, ..., Hy pr, } X .. X {Hpny 1, - Hyy My, }. Each
road user is assumed to follow an extrapolation hypothesis independently from other road users.
It is then possible to enumerate the road users’ predicted positions at each future in-
stant ¢ > t, for a limited time horizon (See t; in Equation (2))), and identify the instants at
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which the proximity function will be 1, called collision points. A collision point C'P, is de-
fined for two extrapolation hypotheses H;,,, and Hj,, as the first instant ¢, > ¢ at which
Proximity(H;m,(tn), Hjm,(tn)) = 1. Let f be the function that associates to each pair of extrap-
olation hypotheses a collision point if it exists, or the element NoCollision (f is symmetric with
respect to its inputs), and let g; and g, be the inverse functions defined over the collision points
that return the extrapolation hypotheses that lead to the collision point. If f(H;, Hy) = C'P, then
91(CP) = Hy and go(CP) = H, (or vice-versa).

The Case of Two Isolated Road Users

The first simple case of two isolated road users U; and U; is considered (as if there are only two
road users in the region of interest). They may collide at any of Ny p potential collision points.
The event of their collision at collision point C'P is denoted Collision(U;, U;, CP), which can be
written simply Collision(C P) since C'P is associated with the two given extrapolation hypotheses
of the two road users that lead to it. The probability of Collision(CP) is approximated by the
product of the probabilities of following ¢, (C'P) and go(C'P). This can be written as

P(Collision(U;,U;)) = > P(Collision(CP,)) = Y P(q1(CP.)P(g2(CP,)) (4)

1<n<N¢p 1<n<Ncp

The formula presented previously in (5) as a collision probability is very close to Equa-
tion (@), but cannot be properly considered as a probability, and is referred in this paper as the
severity index. The formula to compute the severity index for two road users U; and Uj at ¢, is the
following

_ (tn—tg)?

SeverityIndex(U;, U;, ty) = Z P(g1(CP,))P(g2(CP,)) e 22 ~ 5)

1<n<Ncp

where ¢ is a normalizing constant, equal to an average user reaction time (chosen as 1.5
seconds in this paper).

Collision Probability and Other Indicators for any Number of Road Users

However, analyzing the situation is much more complex if taking into account all road users (and
if there are three road users or more). The probability of collision at a collision point C'P is the
probability of the road users following the extrapolation hypotheses leading to the collision point
and not having collided before with other road users. Similarly to the previous case, the N¢gp
collision points are enumerated for all road users and now ordered by their predicted instant of
occurrence so thatt, <t,.1V1<n< Negp— 1.

The probability of collision at the collision point C'P, is the probability of the corre-
sponding road users to follow ¢;(C'P,) and go(C'P,) and that there is no collision point C'P,,
with another road user occurring prior to C'P, (i.e. with m < n) involving one of the previ-
ous extrapolation hypotheses (i.e. such that there exists another extrapolation hypothesis H and
f(g1(CP,),H) =CP,, or f(g2(CP,), H) = CP,,). This can be computed recursively as
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P(Collision(CPy)) =P(g1(CPy))P(g2(CP))
V1<n<Necp—1, P(Collision(CP,+1)) =P(g1(CPn11))P(g2(CPy11))...

11 (1 — P(Collision(CP,,))) (6)

1<m<n such that
C Py, involves g1 (CPr+1) or g2(CPphy1)

Obtaining the individual collision probability for a single road user and a pair of road users
at ty, as well as the severity index for a pair of road users, is then just a matter of summing over
the corresponding collision points:

P(Collision(U;,U;)) = Z P(Collision(CP,)) (7

1<n<N¢p such that
CPy involves U; and U

P(Collision(U)) = > P(Collision(CP,)) (8)

1<n<N¢p such that
C Py, involves U

SeverityIndex(U;, U;, ty) = Z P(Collision(CP,)) e*% )

1<n<N¢p such that
CPy, involves U; and U

The expected time to collision (TTC) for two road users U; and U;, TT'C(U;, Uj, ty), can
also be computed in this framework if P(Collision(U;,U;)) > 0, i.e. if there is at least one
collision point:

Z 1<n<N¢cp such that P(CO”ZSZOR(CP,J) tn
CPy, involves U; and Uj;

P(Collision(U;, Uj))

TTC(U@,Uj,Tf(D = (10)

In a simple example with three road users and four collision points presented in Figure [I]
the resulting probabilities of collision at the collision points are:

P(Collision(CPy)) =P(Hy1)P(Hs ;)
P(Collision(CP,)) =P(H,2)P(Hs1)
P(Collision(CPs)) =P(H11)P(H21)(1 — P(Collision(CP)))
P(Collision(CPy)) =P(Hy1)P(H22)(1 — P(Collision(CP)))

The probabilities of collision for the pairs of road users are the sum of the probabilities of
collision at the corresponding collision points, C'P; and C'P, for U; and U, C'P; and C' P, for U
and U,. These are also respectively the individual collision probabilities of U3 and U, since they
are each involved in a potential collision with only one other road user Us,. Finally, the individual
probability of collision for U; is the sum of the probabilities of collision at all collision points.
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FIGURE 1 Simple example of three road users in interaction at a three leg intersection.
There are four collision points, C P, CP,, CP; and CP,, at respective times %, 5, 3
and t4, ordered temporally (Uj; is supposed to be too early at the point of intersection for
hypotheses H, ; with H3 ; and Hj ; for a collision point to be considered).

Interactions and Categories
The elementary traffic events that are considered in the analysis are road user interactions. An
interaction is defined as a situation in which two or more road users are close enough in space and
time, and their distance is decreasing. This is a necessary condition for road users to collide, i.e.
some form of exposure to the risk of collision following the definition of (/0) of “an elementary
unit of exposure [...] as any clearly defined and countable event that generates an opportunity for
an accident to occur”. This is implemented as a test over the distance between road users, and
over the cosine of the angle # between the relative velocity, i.e. the difference of the road users’
velocities, and the vector that links the vehicle positions (See Figure [2)). The actual condition
is cos(f) > 0, and a value close to 1 means that vehicles are heading almost straight towards
each other. Simple measurements are made for all interactions at all instants, namely the distance,
cosine of the velocities, and speed differential (norm of the difference of the velocities). The
collision probability, severity index and TTC are also computed at each time instant: if there is no
collision point between the interaction road users, the collision probability and severity index are
0, and TTC is undefined.

Interactions are classified according to the relative trajectories of the road users. Four
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FIGURE 2 Interaction measurements at each instant. Two road users are defined to be in an
interaction if distance is below a given threshold and cos(6) > 0 (0 is the angle between
the relative velocity AYv = v; — v¥3 and the vector that links the road users’ positions).

categories are proposed similarly to (/0):

* head-on: road users moving in opposite direction,
* rear-end: road users following each other, potentially on different lanes,
* side: road users originating from potentially conflicting direction, e.g. at intersections,

e parallel: road users travelling in parallel in the same direction on different lanes.

Categories are identified by counting the number of instants at which the angle ¢(t) be-
tween the road users’ velocities is within some intervals:

* if ¢(t) € [—30°,30°], the instant ¢ counts for rear-end or parallel interactions,

o if ¢(t) € [-180°, —150°] or ¢(t) € [150°,180°], the instant ¢ counts for head-on interac-
tions,

o if ¢(t) € [30°,150°] or ¢(t) € [—150°, —30°], the instant ¢ counts for side interactions.
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Rear-end and parallel interactions are further differentiated by looking that the relative
position of the road users with respect to their common direction of movement. These rules may
be crude and arbitrary, especially because interactions may last some time and really belong to
different categories at different intervals. But they help to broadly categorize interactions. All the
conditions and measures used to characterize interactions are symmetric with respect to the two
road users, as they should be.

EXPERIMENTAL STUDY OF COLLISIONS AND CONFLICTS

Dataset and System description

The framework proposed in this paper is used to explore a large dataset of video recordings of
traffic conflicts and collisions in Kentucky. The dataset was first mentioned in (20) where it was
used to test the video-based tracking system. All the analysis reported here was carried out with
the video recordings as the only source of information. A report providing more details about the
origin of the data was lately found (25). There are two subsets of video recordings, one labeled
as “miss” and the other as “incident”, corresponding respectively to traffic conflicts of mild to
high severity and collisions. It is not clear from (25) how the severity was estimated to identify
the subset of traffic conflicts. Each short video recording is composed of two sub-sequences with
opposite viewpoints taken from two different cameras, each less than ten seconds long. For this
study, only one of these is used. Each recording contains, or should contain, one clear interaction,
i.e. a traffic conflict or a collision. From the original set of 238 traffic conflicts, 9 were removed
because of the dire quality of the video or because no obvious relevant traffic event was recorded.
For similar reasons, 15 collisions were not considered from the original set of 116 collisions. In
some cases, it appears that the recording started after the event of interest. It is not always clear
if a collision actually occurred for interactions in the collision subset. Although the framework
proposed in this paper is generic and can deal with all road users, the interactions contained in this
dataset involved only motorized vehicles.

FIGURE 3 Reference grid in world coordinates projected in the image space and overlaid
over a video frame. The grid spacing is 2.0 m and the height of the displayed vertical line
segment (in blue) is 4.0 m.
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FIGURE 4 Example of video recording conditions, with road users tracks, id number and
speed overlaid.

The calibration of the scene is necessary to recover the real-world positions of the road
users from their coordinates in image space. A robust method was developed to integrate various
pieces of geometric information found in urban traffic scenes and address situations where little is
known about the location, which is common when data is obtained from traffic cameras installed
previously (26) (See Figure [3). The quality of the video data makes road user detection and track-
ing challenging. The video recordings have a resolution of 352 pixels in width by 240 pixels in
height, and varying levels of compression, color aberrations..., affecting the image quality. All the
challenging conditions are covered, with various times of recording (day and night) and weather
conditions: sunny days cause strong shadows, there are many cases of snow, fog and rain (some-
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times at night, in which case the reflection of vehicle headlights causes particular glare). Although
these issues made some recordings impossible to analyze, road users’ detection and tracking was
possible in most recordings (See Figure ), using a video-based system developed previously (4).
The parameters for tracking were taken from a previous validation study done on a separate dataset
in which an automated search for the best parameters was conducted (27)).

The distribution of road user trajectories, in the form of prototype trajectories, was learnt
using a distance of 4 m (24). All pairs of road users existing simultaneously are considered. If
they satisfy the conditions of interaction, their positions are extrapolated using the prototypes, the
collision points are identified and the severity indicators computed automatically. The distance
threshold for the proximity function is set to 1.7 m, which corresponds to a typical minimum width
of current cars. Assuming that road users’ estimated positions are close to their centers, being at a
distance less than this threshold means a collision occurred or was barely avoided.

Example of Interactions

Most interactions of interest in the dataset are either categorized as side or parallel interactions, on
which the rest of this study will focus. The collision probability and TTC as a function of time
are represented for a few interactions of the two subsets in Figure [5] It was found that the severity
index did not carry much additional information (it basically combines the collision probability
and TTC) and is therefore not displayed. A very distinctive feature is that overall, the TTC ex-
hibits a decreasing trend as time goes by for collisions, as one would expect. On the contrary, the
TTC reaches a minimum then increases again for the traffic conflicts, as the road users manage
to avoid the collision. It may be surprising that extrema for the two indicators may be reached at
different instants. Yet the gap is typically limited and is related to difficult tracking and movement
extrapolation when the road users get very close.

Distribution of Indicators and Collision Points

To plot the distributions of indicators for all interactions, we need an aggregated measure to char-
acterize each interaction. A method similar to the one adopted in () is used, namely to average
the n maximum (respectively minimum) values for the collision probability (respectively for the
TTC). The distributions are drawn for interactions with an aggregated collision probability above
a given threshold, set to 0.1 in these results. The distributions are plotted for the two subsets of
traffic conflicts and collisions in Figure[6] It would be expected that collisions would exhibit more
severe indicator values. This is not completely obvious on the plots, although collisions reach
higher collision probabilities and there is a high proportion of them with TTC around 0.5 and 1
second. The two-sample Kolmogorov-Smirnov test was used to compare the sample distributions
of each of the two indicators for the two subsets: the distributions were found to differ significantly
at 4 % and 1 % respectively for the collision probability and the TTC.

It is also possible to study the spatial distribution of the interactions and in particular their
potential collision points. For the same interactions as previously, the maps of all the collision
points are plotted in Figure It can be seen that the distribution is quite different, although
conclusion are difficult to draw since the conditions of the data collection are unclear. This type of
visualization should be useful to explore large amounts of microscopic road safety data.
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FIGURE 5 Plots of the collision probability and TTC at each instant for a small sample
of interactions (without any post-processing), from the two subsets of collisions and traffic
conflicts (respectively on the left and right columns). The interactions plotted on the first
two rows are categorized as side interactions, the ones on the last are categorized as parallel
interactions.
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Traffic Conflicts

Traffic Conflicts

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 . . 1.0 15 2.0 2.5 3.0 3.5 4.0
Collision Probability TTC (second)
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0.4 0.5 0.6 0.7 0.8 0.9 1.0 . 0.5 1.0 15 2.0 2.5 3.0 35 4.0 4.5
Collision Probability TTC (second)

FIGURE 6 Distribution of the maximum collision probability and TTC for interactions in
the subsets of traffic conflicts and collisions (respectively top and bottom histograms).

Discussion

One important aspect of this work is the level of automation of the data processing. Apart from
the sample of manually chosen interactions, all the processing can be done automatically. Yet,
it would be difficult to rely on the tool without verifying its output. Only the side and parallel
interactions were studied in details, as the dataset contains very little actual rear-end interactions
and no head-on interaction. The interactions detected by the system as rear-end or head-on cover
a lot of “normal” interactions, or at least not as severe as some computed indicators could imply.
These limits are first and foremost the limits of the current video-based systems for road user
detection and tracking in urban intersections. The second source of errors in this analysis was the
challenging data quality and the lack of information.

However, it is the authors’ belief that this system can be useful in the exploration of road
safety data. A particular focus is the development of methods robust to errors and noise charac-
teristic of real data, to produce aggregated results such as distributions that can be used for road
safety diagnosis.

Another limitation of this study is the particular dataset available, with such a high propor-
tion of severe interactions. It is difficult to draw any conclusion, as could be done for example in
studies of data collected before and after a counter-measure is implemented. The lack of “normal”
traffic makes comparisons difficult, and has an influence on the distribution of the prototype tra-
jectories used for the prediction of road users’ positions. Evasive actions may therefore have been
picked up as prototype trajectories. It is believed that the impact is limited as these trajectories
should not be very common and have therefore low probabilities.

CONCLUSION AND FUTURE WORK

This paper has presented a refined probabilistic framework for the analysis of road user interac-
tions. In particular, the identification of potential collision points was used to estimate collision
probabilities and their spatial distribution can be visualized. The framework was applied to a large
dataset of more than 300 severe interactions and collisions collected in Kentucky. Despite the lim-



N. Saunier, T. Sayed and K. Ismail 14

Traffic Conflicts

Collisions

FIGURE 7 Maps of the distributions of the collision points (2D hexagonal binning plot) for
the two subsets of sequences, the traffic conflicts (top) and the collisions (bottom).
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ited quality of the data, the road users could be tracked and their interactions studied, including the
computation of the proposed severity indicators. It demonstrates the usefulness of the approach in
studying road user behavior and mechanisms that may lead to collisions.

Future work will explore the possibility of simulating the future positions to generate more
varied outcomes and improve the robustness of the computation of the probability of collision. It
will also focus on the validation of the proposed measurements and severity indicators with respect
to other methods for road safety analysis, in particular based on historical collision data.
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