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A Probabilistic Framework for the Automated Analysis of the Exposure to Road Collision  
 

Nicolas Saunier, Tarek Sayed 
 
Abstract: The advent of powerful sensing technologies, especially video sensors and computer 
vision techniques, has allowed for the collection of large quantities of detailed traffic data. They 
allow us to further advance towards completely automated systems for road safety analysis. This 
paper presents a comprehensive probabilistic framework for automated road safety analysis. 
Building upon traffic conflict techniques and the concept of the safety hierarchy, it provides 
computational definitions of the probability of collision for road users involved in an interaction. 
It proposes new definitions for individual road users and aggregated measures over time. This 
allows the interpretation of traffic from a safety perspective, studying all interactions and their 
relationship to safety. New and more relevant exposure measures can be derived from this work, 
and traffic conflicts can be detected. A complete vision-based system is implemented to 
demonstrate the approach, providing experimental results on real world video data. 
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INTRODUCTION  
Road safety is characterized by the absence of accidents, i.e. collisions between road 

users. The safety is traditionally measured by the number of collisions, or rather its expected 
number at a given time. Traffic safety diagnosis has been traditionally undertaken using 
historical collision data. However, there are well-recognized problems of availability and quality 
associated with collision data. Additionally, the use of collision records for safety analysis is a 
reactive approach: a significant number of collisions has to be recorded before action is taken.  

Therefore there has been considerable interest in research dealing with surrogate safety 
measures (1). The observation of traffic conflicts has been advocated as an alternative or 
complementary approach to analyze traffic safety from a broader perspective than collision 
statistics alone (2, 3, 4, 5, 6). Traffic conflicts are interactions with very similar processes to 
collisions, but without a collision. A conflict is defined as “an observational situation in which 
two or more road users approach each other in space and time to such an extent that a collision is 
imminent if their movements remain unchanged” (7). The concept of collision course is derived 
from this widely accepted definition of traffic conflicts. In (8), users are defined to be on a 
collision course when, “unless the speed and/or the direction of the road users changes, they will 
collide”. Deciding if two road users are on a collision course thus depends on extrapolation 
hypotheses. The definition of (8) uses the common hypothesis of extrapolation with constant 
velocity, i.e. speed and direction. Some definitions of traffic conflicts also include that at least 
one of the road users involved takes a successful evasive action, often in emergency.  

The relationship between traffic conflicts and collisions must be established to use traffic 
conflicts as surrogates to collisions for safety analysis. Most road users move freely in the traffic, 
without having to take into account other road users. Otherwise, road users interact with each 
other. An interaction is defined as a situation in which two or more road users are close enough 
in space and time, and their distance is decreasing. Many researchers, especially in Scandinavian 
countries (2, 6), assume that all interactions can be ranked in a safety hierarchy, with collisions at 
the top. The interactions located next to the collisions in the safety hierarchy, very similar to 
collisions, but without an actual collision, can be called quasi-collisions. The interactions can 
thus be recursively ranked in the safety hierarchy. One can imagine “quasi-quasi-collisions”, and 
so on... The pyramid shape of the hierarchy stands for the frequency of events. The further from 
collisions, the less severe and more frequent the events.  

For this concept to be operational, the safety hierarchy is transferred into measurable 
parameters based on certain assumptions. For each interaction in the hierarchy, a severity can be 
estimated, matching its position in the hierarchy, i.e. measuring the proximity to the potential 
occurrence of a collision, which can be interpreted as the probability of collision. Many severity 
indicators, such as the Time-To-Collision (TTC) and the Post-Encroachment Time (PET), have 
been developed to evaluate the distance in space and time between the vehicles involved and 
their evasive action(s) (9, 10). Traffic Conflict Techniques (TCTs) involve observing and 
evaluating the frequency and severity of traffic conflicts at an intersection by a team of trained 
observers.  

Several automated systems, using mostly video sensors, have been and are being 
developed for traffic monitoring (11, 12, 13, 14, 15). In a previous paper (16), the authors have 
shown that traffic conflicts can be detected in video sequences using HMM-based semi-
supervised machine learning techniques. This paper presents an extension of the earlier work 
(16, 17): a comprehensive probabilistic framework relying on the concept of the safety hierarchy. 
It provides a computational definition of severity as the probability of collision that is suited for 
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an automated system. Being able to compute the probability for any road user to collide at a 
given time also allows to detect traffic conflicts and estimate detailed exposure measures.  

The rest of the paper proceeds as follows. The next section presents related work in 
traffic safety. The third section will present the probabilistic framework and the computation of 
the collision probability. The fourth section summarizes the developed vision-based system that 
provides real traffic data. In the fifth section, experimental results will illustrate the approach on 
this real traffic data.  

RELATED WORK 
The basis for this work draws heavily from the traffic conflict literature, and the concept 

of safety hierarchy, as shown in the introduction. Considerable work has been accomplished to 
validate the TCTs, involving especially the development of severity indicators, in order to obtain 
more objective judgments from observers. The relationship between traffic conflicts and 
collisions is not simple (3). TCTs try to identify the subset of the most serious traffic conflicts 
that are the closest to collisions. Calibration conferences (Malmö, 1983 and Trautenfels 1985) 
compared most of the different TCTs developed so far, and found them to mostly agree 
(although the definitions of the considered traffic conflicts differ). Researchers and practitioners 
use various combinations of severity indicators to detect traffic conflicts and estimate their 
severity.  

Among TCTs, The Swedish TCT is one of the best-known, and is still being actively 
used for everyday safety assessments. It relies on the Time to Accident (TA), defined as “the 
time that is remaining from when the evasive action is taken until the collision would have 
occurred if the road users had continued with unchanged speeds and directions. Its value can be 
calculated based on the estimates of the distance to the potential point of collision and the speed 
when the evasive action is taken” (18). This speed and the TA are used to determine the border 
between “serious conflicts” and “non-serious conflicts”. This TA indicator is the value at a 
special instant of the interaction of the general TTC severity indicator, which is defined as long 
as a collision course exists. Another severity indicator is the PET, defined as the time measured 
from the moment the first road user leaves the potential collision point to the moment the other 
road user enters this point. Other indicators include speed and its derivatives, and subjective 
elements of the observers’ judgment of the chance of a collision, incorporating “speed, proximity 
of vehicles, apparent control of the driving task and environmental conditions such as visibility 
or a wet road surface” (3).  

The various severity indicators provide cues to the estimation of the severity of 
interactions. Yet the quest for the right “border” between traffic conflicts and non-conflict 
interactions doesn’t appear so relevant when considered into the general framework of the safety 
hierarchy which places all interactions on a continuum along the severity dimension. The 
potential for the use of all interactions was investigated in (8, 6). They studied the shape of the 
distribution of interactions according to their severity, and concluded that different shapes stand 
for different safety situations and that there is a severity threshold, under which interactions 
indicate normal road users’ interactions, and above which interactions are hints of safety issues.  

If one considers the whole continuum of traffic events, the concept of exposure comes 
into play. Exposure is typically defined as a “measure of spatial or temporal duration in the 
traffic system in relation to the number of dynamic system objects, road-users, vehicles (axles), 
etc” (19, 10). Common measures are a number of inhabitants or some amount of travel, either in 
distance traveled (road user-kilometers), or in time traveled (road user-hours) that takes into 
account the speed of road users. Exposure was introduced to make comparisons more fair 
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between different situations, for example annual numbers of collisions for countries with 
different number of inhabitants, or different car ownership levels. Dividing the number of 
collisions by the corresponding exposure yields a collision rate, relative to that measure of 
exposure, that is routinely used to compare varied situations (countries, period of observation, 
group of users...). However, this should be done with care since there is no reason to believe a 
priori that the relationship between the safety and the exposure is linear (20). More generally, 
any situation that is necessary for a collision to happen can be considered as exposure to 
collision. All interactions in the safety hierarchy are exposure to collision, more or less close 
according to their severity. Estimating the severity of interactions provides exposure measures 
that are more detailed and relevant than mere volume counts, giving more insight into the 
processes that lead to collisions.  

There have been a few attempts at building a system for automated road safety analysis 
(21, 22, 23, 24, 25). To our knowledge, the system presented in (16) is the first automated system 
for traffic conflict detection. There is limited research in automated systems that can provide 
severity indicators, except for specific situations and type of traffic conflicts. Only (22) describes 
a system that can measure the probability of collision for any two interacting road users, but it is 
validated only on a few experiments with toy cars. The formulas to compute the collision 
probability for two interacting road users are taken from this work. This paper presents 
extensions for the collision probability of one road user and aggregated measures over time. 

THE PROBABILISTIC FRAMEWORK 

Re-thinking the Collision Course 
Any situation that is necessary for a collision to happen can be considered as exposure to 

collision. If there is no exposure, e.g. one stays at home, or is the only road user, no collision 
with another road user is possible. There are obviously physical limits to possible road user 
movements (bounded acceleration, maximum angle of turning movement, road users’ reaction 
times...), so that it is not possible for all road users to collide in the future. If a collision between 
two road users is possible, i.e. there is a possible chain of events that can lead to a collision, the 
probability of collision can be considered. The collision probability must take into account all the 
possible movements of the road users, which will return the severity, or proximity to a potential 
collision.  

The definition of a collision course (8) takes into account only “unchanged road user 
movements”, i.e. movements without road users’ intervention. This raises many questions and is 
difficult to properly define. It is often used experimentally with simplified hypotheses for road 
users’ movements. However a collision course can be better defined as an interaction in which 
the collision probability is non-zero at a given time. The severity of the collision course at a 
given instant is the collision probability, summing the probability of all chain of possible events 
that can lead to a collision. This implies the existence of a probability distribution over all traffic 
events, more precisely over road users’ movements, and requires a practical way to estimate this 
distribution for real-world use.  

The Collision Probability for Two Road Users 
The formulas presented in this part are based on (22), and to a lesser extent on (23). The 

collision probability for a given interaction between two road users can be computed at a given 
instant by summing the collision probability over all possible motions that lead to a collision, 
given the road users’ states. This requires the ability to generate for each road user at any instant 
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a distribution over its possible future positions given its previous positions. A possible future 
motion, i.e. a temporal series of predicted positions, defines an extrapolation hypothesis. The 
collision probability computation is approximated by a discrete sum when taking into account a 
finite number of the most probable extrapolation hypotheses.  

First the collision probability at time t0 for two road users A1 and A2 with respective 
observed trajectories Q1,t≤t0

 and Q2,t≤t0
 (before t0) is defined when considering only one 

extrapolation hypothesis for each, respectively Hi and Hj. The predicted positions according to 
the hypotheses Hi and Hj are computed for a number of time steps: the predicted time of the 
collision ti,j is the first instant at which the road users would be in contact. The larger 

0,, tt jiji −=∆ , the more likely the road users can react and avoid the collision. This time takes 

into account speed and distance and is directly measurable against the road users’ reaction times. 
The formula of the probability of collision given hypotheses Hi and Hj is taken from (22) 
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where σ is a normalizing constant. It is estimated in (22) that this probability should 
change when the elapsed time ∆i,j is close to the road user reaction time. Therefore σ is chosen to 
be equal to an average user reaction time1 . The number of predicted positions can be limited to 
3σ, as the resulting probability is very close to zero when ∆i,j reaches that value. Based on (22), 
the collision probability for two road users A1 and A2 at t0 is 
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where )|(
0,1 tti QHP ≤  is the probability of road user A1 to move according to extrapolation 

hypothesis Hi (same for A2 and Hj). The sum is done over a variety of extrapolation hypotheses, 
although this number must be limited to maintain reasonable computation times. This formula is 
illustrated in a simplified example in Figure 1. In a traditional TCT, one could choose a threshold 
on the collision probability and other indicators to define traffic conflicts. In the new approach 
described in this paper, road safety can be automatically analyzed in detail by computing 
continuously the collision probability of all interactions.  

The Collision Probability for One Road User 
When considering the collision probability for only one road user, the formulas have to 

be adapted. It is not possible to directly sum the collision probabilities of the interactions in 
which the road user is involved, as only one collision can happen for each extrapolation 
hypothesis. The predicted positions according to hypothesis Hi and all hypotheses that the other 
interacting road user may follow are computed for a number of time steps. If the road user 
follows the motion hypothesis Hi, the predicted time of the collision ti is the first instant at which 
the road user following motion hypothesis Hi would be in contact with another road user 
( 0ttii −=∆ ). Let Qk(i) be the observed trajectory of this road user and Hj(i) the hypothesis that 

leads this road user to a collision. The collision probability of the road user A1 with n other road 
users at t0 is 

                                                           
1A value of 1.5 seconds is chosen for the experiments described in this paper. 
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Aggregating over Time 
The previous definitions deal only with one road user or one interaction between two 

road users at a given instant. The collision probability for two road users in interaction can be 
used for the detection of traffic events relevant to safety. However, to characterize a given period 
of time at a location, one needs a method to accumulate the indicators over all interactions that 
occurred in the monitored area during this period of time, or over all road users that went through 
the monitored area during this period of time.  

The first aggregation level is the interaction or the road user. This indicator should reflect 
the highest collision probability over time, but also the amount of time during which this 
collision probability was high. This should therefore be similar to an integral of the instantaneous 
collision probability over time. However, issues arise when dealing with real data, e.g. collected 
after automated road user tracking using video sensors: tracking errors and noise produce 
measures of collision probability over time which may be randomly truncated and noisy. Hu et 
al. report similar observations in (22). This would make it difficult to compare fairly the 
interactions. Consequently, to improve robustness, it is preferred to use the average of a small 
number of largest values taken by the collision probability over time. Let n be that number. Let 
SeverityIndex(A1, A2) and SeverityIndex(A1) be the averages of the n largest values taken 
respectively by the collision probability ),|),((

00 ,2,121 tttt QQAACollisionP ≤≤  over the time that the 

two road users A1 and A2 interacted in the monitored area, and by the collision probability 
),...,,|)((

000 ,,2,11 ttntttt QQQACollisionP ≤≤≤  over the time that the road user A1 has spent in the 

monitored area. The values can subsequently be summed over time for all interactions or road 
users. The severity indices for the time interval [t1 t2] are 
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OVERVIEW OF A VISION-BASED AUTOMATED SYSTEM 
This framework is used in a complete automated vision-based system for road safety 

analysis. Such a system requires a high level understanding of the scene and is traditionally 
composed of two levels of modules (see Figure 2):  

1. a video processing module for road user detection and tracking,  
2. interpretation modules for interaction analysis and traffic conflict detection.  
For road safety applications, the approach relies on the building of two databases: a 

trajectory database, where the results of the video processing module are stored, and an 
interaction database, where all interactions between road users within a given distance are 
considered, and for which various indicators, including collision probability and other severity 
indicators, are automatically computed. Identifying traffic conflicts and measuring other traffic 
parameters becomes the problem of mining these databases.  

The road user detection and tracking module used in the system described in this paper 
relies on a feature-based tracking method that extends to intersections the method described in 
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(11). In this approach, distinguishable points or lines in the image are tracked: a moving object 
may have multiple features, which must be grouped for each object. A detailed description of the 
tracking algorithm is presented in (17). The algorithm relies on world coordinates through the 
estimation of the homography matrix. The tracking accuracy for motor vehicles has been 
measured between 84.7% and 94.4% on three different sets of sequences (pedestrians and two-
wheels may also be tracked, but less reliably). This means that most trajectories are detected by 
the system, although overgrouping and oversegmentation still happens and creates some 
problems. The most important limitation for traffic conflict detection is the inaccuracy in the 
estimation of road user sizes.  

Trajectories provided by the first module are used in subsequent modules to extract 
relevant information. A first system was developed to detect directly traffic conflicts using 
HMM-based semi-supervised machine learning techniques (16). To apply the probabilistic safety 
framework presented in this paper, it is necessary to be able to predict road users’ future 
positions. Motion patterns, represented by actual prototype trajectories without any special pre-
processing, are learnt incrementally using the Longest Common Sub-sequence Similarity (LCSS) 
(26). The description of the motion pattern learning algorithm is beyond the scope of this paper 
and is described in detail in (27). The motion pattern probabilities are computed by matching all 
trajectories over a given period of time using LCSS, and can be updated continuously in a real-
time application, as traffic patterns change in time. When computing the collision probability, the 
partial trajectories of each considered road user at each time are matched against the set of learnt 
prototypes using the LCSS.  

EXPERIMENTAL RESULTS 
The core architecture of the system has been implemented, using the Intel OpenCV 

library2 . On the contrary to (22) which uses toy cars, the present work is tested on real traffic 
video data, and a few traffic conflict instances identified by trained traffic conflict observers3 .  

Three sets of data are used. The first is a set of traffic sequences on the same location 
initially used for the training of traffic conflict observers in the 1980s. Their length ranges from 
10 seconds to 60 seconds. This “Conflict” set contains 2941 feature trajectories of a minimum 
length of 40 frames, and 327 road user trajectories. The second dataset is composed of two long 
sequences, each close to one hour long, recorded at an intersection in the Twin Cities (United 
States), in Minnesota. This “Minnesota” set contains 88255 feature tracks of a minimum length 
of 40 frames, and 11734 road user trajectories. The third dataset is composed of 6 sequences, 
each about 20 minutes long, recorded in Reggio di Calabria (south Italy). This “Italy” dataset 
contains 138009 feature tracks of a minimum length of 40 frames, and 9849 road user 
trajectories.. 

First the motion patterns are learnt from the feature trajectories, which are smoothed 
using a Kalman filter beforehand. It is difficult to evaluate such an unsupervised task. The learnt 
prototypes for the datasets are presented in Figure 3. The visual examination of the motion 
patterns suggests a plausible division of the trajectory space. Traffic patterns are well identified, 
and the traffic volumes are consistent with observation.  

Traffic Conflict Study 

                                                           
2http://sourceforge.net/projects/opencvlibrary/ 
3Additional experimental results are available at the address 
http://www.confins.net/saunier/data/saunier07trb.html. 
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Since only a few traffic conflict instances are available in the Conflict dataset, only 
preliminary results obtained for the three detectable traffic conflict instances are reported in this 
paper (these three traffic conflict instances belong to three sequences of the Conflict dataset). It 
appears that the prototype trajectories are well suited for the computation of the collision 
probability. An example of movement prediction is presented for one conflict in Figure 4.  

The curves of the collision probability as a function of time, computed using formula 2,, 
are displayed for the three traffic conflicts in Figure 5. For each of these instances, one vehicle is 
over-segmented, resulting in two trajectories, and thus two traffic events (and two curves). It 
appears that the collision probability shows an expected evolution over time, starting with low 
values, increasing until the probability of collision reaches a maximum, to decrease afterward, 
often truncated due to tracking errors and disrupted trajectories.  

Over-segmentation of tracked road users can cause major problems. The same road user 
detected twice can entail the detection of an interaction between two very close “imaginary” road 
users, often with very high computed collision probability. Fortunately, these interactions are 
mostly filtered out by testing for the similarity between the trajectories of interacting road users 
using the LCSS distance. In two of the three sequences containing traffic conflicts, querying 
interactions for which the severity index is superior to 0.1 returns only the traffic conflicts. For 
the third sequence, it returns the traffic conflict and some interactions between road users in 
traffic moving in opposite directions. Querying the other sequences that contain no detectable 
traffic conflicts also return these “normal” interactions that can be easily identified. This shows 
that traffic conflict detection can be achieved by computing the collision probability. Adding 
other severity indicators will further improve the detection results.  

Severity Indices 
Using formula 5, the severity indices of all interactions are computed for the sequences of 

the Minnesota and Italy datasets, which are both more than one hour long. The distributions of 
the interaction according to their severity indices are represented individually for each sequence 
of the two datasets in the Figure 6. As expected, the distributions exhibit the shape of the safety 
hierarchy, with the frequency of events decreasing as the severity increases. The different 
sequences in each dataset exhibit different distributions. For example, more interactions for all 
level of severity are observed in the sequence 2 in the Minnesota dataset. This type of analysis 
could be performed to compare different situations, for example in before and after studies. It is 
also possible to study interactions by their locations, by building severity maps, and therefore 
analyze particular problems in the intersection.  

CONCLUSIONS AND FUTURE WORK 
This paper presents a comprehensive probabilistic framework for automated road safety 

analysis. It provides computation definitions of the probability of collisions for road users 
involved in an interaction, extending the work of (22) to an individual collision probability and 
aggregated measures over time. By integrating this framework into a complete system for vision-
based road safety analysis, it is shown that these definitions are suitable for an automated system. 
This provides detailed severity measures, exposure estimates and a method to detect and study 
traffic conflicts. The system is demonstrated using real traffic data, including some traffic 
conflict instances, illustrating the approach and its usefulness.  

New data is currently being collected to expand the results and validate the computed 
measures. Further research is needed to investigate and validate the relationship of collision 
probability to safety. 
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LIST OF FIGURES 
FIGURE 1  In this simplified situation, two vehicles approach a T intersection at time t0. 
Only two extrapolation hypotheses are considered for each vehicle. Vehicle 1 is expected to 
turn left or right, with respective probabilities 0.4 and 0.6. Vehicle 2 is expected to go 
straight or turn left, with respective probabilities 0.7 and 0.3. There are two potential 
collision points, that can happen at times t1 and t2. The collision probability at time t0 is 
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FIGURE 2  Overview of a modular system for vision-based automated road safety analysis. 
FIGURE 3  Motion patterns learnt respectively on sequences of the Conflict dataset (top), 
the Minnesota dataset (bottom left) and the Italy dataset (bottom right), resulting 
respectively in 58, 128 and 58 prototype trajectories. The tracks are displayed in color, 
from white to red indicating the number of matched trajectories in the sequence for each 
pattern, i.e. the traffic volume along these patterns. 
FIGURE 4  An example of movement prediction in a real traffic conflict situation 
(Sequence 1, See top plot in Figure 5). The vehicle trajectories are red and blue, with a dot 
marking their position, and the future positions are respectively cyan and yellow. 
FIGURE 5  Graphs of the collision probability for the three traffic conflicts (collected in 
three separate sequences), as a function of time (counted in frame numbers). In all 
sequences, vehicle 1 travels south-bound through the intersection and vehicle 2 comes from 
an opposing approach. Vehicle 2 turns left in sequence 1 (top) (See Figure 4), right in 
sequence 2 (middle) and stops in sequence 3 (bottom). 
FIGURE 6  Distribution of the interactions according to their severity indices (with a zoom 
on the higher severities), quantified by 0.1 (the point at severity index x stands for the 
number of interactions with severity index between x-0.1 and x), for the sequences of the 
Minnesota dataset (top) and the Italy dataset (bottom). 
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FIGURE 1  In this simplified situation, two vehicles approach a T intersection at time t0. 
Only two extrapolation hypotheses are considered for each vehicle. Vehicle 1 is expected to 
turn left or right, with respective probabilities 0.4 and 0.6. Vehicle 2 is expected to go 
straight or turn left, with respective probabilities 0.7 and 0.3. There are two potential 
collision points, that can happen at times t1 and t2. The collision probability at time t0 is 
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FIGURE 2  Overview of a modular system for vision-based automated road safety analysis. 
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FIGURE 3  Motion patterns learnt respectively on sequences of the Conflict dataset (top), 
the Minnesota dataset (bottom left) and the Italy dataset (bottom right), resulting 
respectively in 58, 128 and 58 prototype trajectories. The tracks are displayed in color, 
from white to red indicating the number of matched trajectories in the sequence for each 
pattern, i.e. the traffic volume along these patterns. 
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FIGURE 4  An example of movement prediction in a real traffic conflict situation 
(Sequence 1, See top plot in Figure 5). The vehicle trajectories are red and blue, with a dot 
marking their position, and the future positions are respectively cyan and yellow. 
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FIGURE 5  Graphs of the collision probability for the three traffic conflicts (collected in 
three separate sequences), as a function of time (counted in frame numbers). In all 
sequences, vehicle 1 travels south-bound through the intersection and vehicle 2 comes from 
an opposing approach. Vehicle 2 turns left in sequence 1 (top) (See Figure 4), right in 
sequence 2 (middle) and stops in sequence 3 (bottom). 
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FIGURE 6  Distribution of the interactions according to their severity indices (with a zoom 
on the higher severities), quantified by 0.1 (the point at severity index x stands for the 
number of interactions with severity index between x-0.1 and x), for the sequences of the 
Minnesota dataset (top) and the Italy dataset (bottom).  


