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A Probabilistic Framework for the Automated Analysis of the Exposureto Road Collision
Nicolas Saunier, Tarek Sayed

Abstract: The advent of powerful sensing technologies, daffgwideo sensors and computer
vision techniques, has allowed for the collectidhaoge quantities of detailed traffic data. They
allow us to further advance towards completely matied systems for road safety analysis. This
paper presents a comprehensive probabilistic frarieior automated road safety analysis.
Building upon traffic conflict techniques and thencept of the safety hierarchy, it provides
computational definitions of the probability of tislon for road users involved in an interaction.
It proposes new definitions for individual road rssand aggregated measures over time. This
allows the interpretation of traffic from a safgigrspective, studying all interactions and their
relationship to safety. New and more relevant edposeasures can be derived from this work,
and traffic conflicts can be detected. A completsion-based system is implemented to
demonstrate the approach, providing experimensalli®on real world video data.



INTRODUCTION

Road safety is characterized by the absence ofleas, i.e. collisions between road
users. The safety is traditionally measured byrthmber of collisions, or rather its expected
number at a given time. Traffic safety diagnosis hmeeen traditionally undertaken using
historical collision data. However, there are weltognized problems of availability and quality
associated with collision data. Additionally, theeuof collision records for safety analysis is a
reactive approach: a significant number of colhsithas to be recorded before action is taken.

Therefore there has been considerable interests@arch dealing with surrogate safety
measures 1). The observation of traffic conflicts has beervazhted as an alternative or
complementary approach to analyze traffic safegynfra broader perspective than collision
statistics alone? 3, 4, 5, 6). Traffic conflicts are interactions with very slar processes to
collisions, but without a collision. A conflict defined as “an observational situation in which
two or more road users approach each other in spatéime to such an extent that a collision is
imminent if their movements remain unchangeg): The concept of collision course is derived
from this widely accepted definition of traffic dtiots. In (8), users are defined to be on a
collision course when, “unless the speed and/oditeetion of the road users changes, they will
collide”. Deciding if two road users are on a ctin course thus depends on extrapolation
hypotheses. The definition 08)(uses the common hypothesis of extrapolation wihstant
velocity, i.e. speed and direction. Some defingiaf traffic conflicts also include that at least
one of the road users involved takes a succesahsive action, often in emergency.

The relationship between traffic conflicts and isadins must be established to use traffic
conflicts as surrogates to collisions for safetglgsis. Most road users move freely in the traffic,
without having to take into account other road sis@therwise, road users interact with each
other. An interaction is defined as a situatiorwimich two or more road users are close enough
in space and time, and their distance is decreaslagy researchers, especially in Scandinavian
countries 2, 6), assume that all interactions can be rankedsafety hierarchy, with collisions at
the top. The interactions located next to the slfis in the safety hierarchy, very similar to
collisions, but without an actual collision, can teled quasi-collisions. The interactions can
thus be recursively ranked in the safety hierar€@re can imagine “gquasi-quasi-collisions”, and
so on... The pyramid shape of the hierarchy stémdthe frequency of events. The further from
collisions, the less severe and more frequentvbats.

For this concept to be operational, the safetyanadry is transferred into measurable
parameters based on certain assumptions. For eterhdtion in the hierarchy, a severity can be
estimated, matching its position in the hierarabg, measuring the proximity to the potential
occurrence of a collision, which can be interpreasdhe probability of collision. Many severity
indicators, such as the Time-To-Collision (TTC) dahd Post-Encroachment Time (PET), have
been developed to evaluate the distance in spatdirae between the vehicles involved and
their evasive action(s)9( 10). Traffic Conflict Techniques (TCTs) involve obserg and
evaluating the frequency and severity of traffioftiots at an intersection by a team of trained
observers.

Several automated systems, using mostly video sgn$mve been and are being
developed for traffic monitoringl{, 12, 13, 14, 15). In a previous papedf), the authors have
shown that traffic conflicts can be detected ineadsequences using HMM-based semi-
supervised machine learning techniques. This pppesents an extension of the earlier work
(16, 17): a comprehensive probabilistic framework relyorgthe concept of the safety hierarchy.
It provides a computational definition of severdty the probability of collision that is suited for



an automated system. Being able to compute theapriidly for any road user to collide at a
given time also allows to detect traffic conflietsd estimate detailed exposure measures.

The rest of the paper proceeds as follows. The megtion presents related work in
traffic safety. The third section will present thmbabilistic framework and the computation of
the collision probability. The fourth section sunmmas the developed vision-based system that
provides real traffic data. In the fifth sectioxperimental results will illustrate the approach on
this real traffic data.

RELATED WORK

The basis for this work draws heavily from theficatonflict literature, and the concept
of safety hierarchy, as shown in the introductiGonsiderable work has been accomplished to
validate the TCTs, involving especially the devehgmt of severity indicators, in order to obtain
more objective judgments from observers. The m@tatip between traffic conflicts and
collisions is not simpled). TCTs try to identify the subset of the most sesi traffic conflicts
that are the closest to collisions. Calibrationfecences (Malmo, 1983 and Trautenfels 1985)
compared most of the different TCTs developed g9 dad found them to mostly agree
(although the definitions of the considered traffanflicts differ). Researchers and practitioners
use various combinations of severity indicatorsdagect traffic conflicts and estimate their
severity.

Among TCTs, The Swedish TCT is one of the best-kmoand is still being actively
used for everyday safety assessments. It relieh@ime to Accident (TA), defined as “the
time that is remaining from when the evasive acti®raken until the collision would have
occurred if the road users had continued with ungbd speeds and directions. Its value can be
calculated based on the estimates of the distantteetpotential point of collision and the speed
when the evasive action is takerd8). This speed and the TA are used to determinédnger
between “serious conflicts” and “non-serious candli. This TA indicator is the value at a
special instant of the interaction of the generBCTseverity indicator, which is defined as long
as a collision course exists. Another severityaathr is the PET, defined as the time measured
from the moment the first road user leaves thermiatiecollision point to the moment the other
road user enters this point. Other indicators idelspeed and its derivatives, and subjective
elements of the observers’ judgment of the chameecollision, incorporating “speed, proximity
of vehicles, apparent control of the driving taskl &nvironmental conditions such as visibility
or a wet road surface3).

The various severity indicators provide cues to #stimation of the severity of
interactions. Yet the quest for the right “bordd@®tween traffic conflicts and non-conflict
interactions doesn’t appear so relevant when censitlinto the general framework of the safety
hierarchy which places all interactions on a caniim along the severity dimension. The
potential for the use of all interactions was iriggged in 8, 6). They studied the shape of the
distribution of interactions according to their sdty, and concluded that different shapes stand
for different safety situations and that there isewerity threshold, under which interactions
indicate normal road users’ interactions, and abwavieh interactions are hints of safety issues.

If one considers the whole continuum of traffic e the concept of exposure comes
into play. Exposure is typically defined as a “measof spatial or temporal duration in the
traffic system in relation to the number of dynarsystem objects, road-users, vehicles (axles),
etc” (19, 10). Common measures are a number of inhabitantsroe @amount of travel, either in
distance traveled (road user-kilometers), or inetimaveled (road user-hours) that takes into
account the speed of road users. Exposure wasduted to make comparisons more fair



between different situations, for example annuamibpers of collisions for countries with
different number of inhabitants, or different cavnership levels. Dividing the number of
collisions by the corresponding exposure yieldsoliston rate, relative to that measure of
exposure, that is routinely used to compare vasiathtions (countries, period of observation,
group of users...). However, this should be dorné ware since there is no reason to believe a
priori that the relationship between the safety #ra exposure is linea@). More generally,
any situation that is necessary for a collisionhtppen can be considered as exposure to
collision. All interactions in the safety hierarclaye exposure to collision, more or less close
according to their severity. Estimating the seyeat interactions provides exposure measures
that are more detailed and relevant than mere wlaounts, giving more insight into the
processes that lead to collisions.

There have been a few attempts at building a sy$terautomated road safety analysis
(21, 22, 23, 24, 25). To our knowledge, the system presented.@) is the first automated system
for traffic conflict detection. There is limited search in automated systems that can provide
severity indicators, except for specific situatiamal type of traffic conflicts. Only2@) describes
a system that can measure the probability of ¢ofisor any two interacting road users, but it is
validated only on a few experiments with toy cafee formulas to compute the collision
probability for two interacting road users are takiom this work. This paper presents
extensions for the collision probability of one dazser and aggregated measures over time.

THE PROBABILISTIC FRAMEWORK

Re-thinking the Collision Course

Any situation that is necessary for a collisiorhgppen can be considered as exposure to
collision. If there is no exposure, e.g. one stalyhome, or is the only road user, no collision
with another road user is possible. There are alsWophysical limits to possible road user
movements (bounded acceleration, maximum anglerairtg movement, road users’ reaction
times...), so that it is not possible for all ragkrs to collide in the future. If a collision besn
two road users is possible, i.e. there is a passibain of events that can lead to a collision, the
probability of collision can be considered. Thelisan probability must take into account all the
possible movements of the road users, which willrrethe severity, or proximity to a potential
collision.

The definition of a collision course)(takes into account only “unchanged road user
movements”, i.e. movements without road usersugtetion. This raises many questions and is
difficult to properly define. It is often used expeentally with simplified hypotheses for road
users’ movements. However a collision course cabditer defined as an interaction in which
the collision probability is non-zero at a givemdé. The severity of the collision course at a
given instant is the collision probability, summitige probability of all chain of possible events
that can lead to a collision. This implies the &ase of a probability distribution over all traffi
events, more precisely over road users’ movemant$requires a practical way to estimate this
distribution for real-world use.

The Collision Probability for Two Road Users

The formulas presented in this part are base®?hn @nd to a lesser extent az8). The
collision probability for a given interaction betaretwo road users can be computed at a given
instant by summing the collision probability ovér @ossible motions that lead to a collision,
given the road users’ states. This requires thi@yatom generate for each road user at any instant



a distribution over its possible future positiongeq its previous positions. A possible future
motion, i.e. a temporal series of predicted posgjodefines an extrapolation hypothesis. The
collision probability computation is approximateg d discrete sum when taking into account a
finite number of the most probable extrapolatiopdiheses.

First the collision probability at tim& for two road usergy and A, with respective
observed trajectorie® 4, and Qr«, (before to) is defined when considering only one

extrapolation hypothesis for each, respectivdiyandH;. The predicted positions according to
the hypothesesl; and H; are computed for a number of time steps: the preditime of the

collision t;; is the first instant at which the road users wobkl in contact. The larger
A =t —t,, the more likely the road users can react anddatfe collision. This time takes

into account speed and distance and is directlysorahle against the road users’ reaction times.
The formula of the probability of collision givetypothesesd; andH; is taken from Z2)
A2
P(Callison(A,A)|H;,H,) =€ 20" (1)

where o is a normalizing constant. It is estimated #2)(that this probability should
change when the elapsed tiflg is close to the road user reaction time. Therefoisechosen to
be equal to an average user reaction tinlehe number of predicted positions can be limtted
30, as the resulting probability is very close toazethend ; reaches that value. Based @2)(
the collision probability for two road usets andA; atty is

A7

P(Collision(A, A)| Qua, Q) = 2 P(H, 1 Quua JP(H, 1Quis )6 7 (2)

where P(H, |Q,,,) is the probability of road usés to move according to extrapolation

hypothesidH; (same forA; andH;). The sum is done over a variety of extrapolahgpotheses,
although this number must be limited to maintaimsmmnable computation times. This formula is
illustrated in a simplified example in Figure 1.drraditional TCT, one could choose a threshold
on the collision probability and other indicatoosdefine traffic conflicts. In the new approach
described in this paper, road safety can be autocaflgtt analyzed in detail by computing
continuously the collision probability of all inestions.

The Collision Probability for One Road User

When considering the collision probability for ordye road user, the formulas have to
be adapted. It is not possible to directly sum ¢b#ision probabilities of the interactions in
which the road user is involved, as only one daolfiscan happen for each extrapolation
hypothesis. The predicted positions according tooltyesisH; and all hypotheses that the other
interacting road user may follow are computed fonumnber of time steps. If the road user
follows the motion hypothesld;, the predicted time of the collisidnis the first instant at which
the road user following motion hypothedis would be in contact with another road user

(A =t —t,). Let Qi) be the observed trajectory of this road user ldp¢the hypothesis that

leads this road user to a collision. The colligowabability of the road use¥; with n other road
users atp is

A value of 1.5 seconds is chosen for the experisndescribed in this paper.
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P(COIIISon(Ai) | Qltsto ’QZ,ISIO ""’Qn,tsto) = z P(Hl | Ql,tsto ) P(H j(i) | Qk(i),tsto )e ? (3)

Aggregating over Time

The previous definitions deal only with one roaerusr one interaction between two
road users at a given instant. The collision prdialdor two road users in interaction can be
used for the detection of traffic events relevansafety. However, to characterize a given period
of time at a location, one needs a method to actatmthe indicators over all interactions that
occurred in the monitored area during this peribtinoe, or over all road users that went through
the monitored area during this period of time.

The first aggregation level is the interactiontoe toad user. This indicator should reflect
the highest collision probability over time, butsalthe amount of time during which this
collision probability was high. This should thenefde similar to an integral of the instantaneous
collision probability over time. However, issuessarwhen dealing with real data, e.g. collected
after automated road user tracking using video aendracking errors and noise produce
measures of collision probability over time whickayrbe randomly truncated and noisy. Hu et
al. report similar observations ir22). This would make it difficult to compare fairlyhe
interactions. Consequently, to improve robustniss, preferred to use the average of a small
number of largest values taken by the collisiorbplolity over time. Len be that number. Let
Severitylndex(A1, Az) and Severitylndex(A;) be the averages of the largest values taken

respectively by the collision probability(Collision(A, A) [ Q. ,Q., 9QVer the time that the

two road userdA; and A; interacted in the monitored area, and by the siohi probability
P(Collision(A) [ Qs Quer, 1+ Qursr,) OVEr the time that the road usr has spent in the

monitored area. The values can subsequently be sdnover time for all interactions or road
users. The severity indices for the time intertaly] are
InteractionSeveritylndex([t, t,]) = Z Severitylndex(A, A;) (4)

(i,J) suchthat Aand A; areobserved
inInteractionduring[t; t,]

User Severitylndex([t, t,]) = D Severityindex(A) (5)

i suchthat A isobserved
during[t; t,]

OVERVIEW OF A VISION-BASED AUTOMATED SYSTEM

This framework is used in a complete automatedomitiased system for road safety
analysis. Such a system requires a high level gtateting of the scene and is traditionally
composed of two levels of modules (see Figure 2):

1. a video processing module for road user deteetra tracking,

2. interpretation modules for interaction analysisl traffic conflict detection.

For road safety applications, the approach relieghe building of two databases: a
trajectory database, where the results of the vigemressing module are stored, and an
interaction database, where all interactions betwexad users within a given distance are
considered, and for which various indicators, idatg collision probability and other severity
indicators, are automatically computed. Identifyingffic conflicts and measuring other traffic
parameters becomes the problem of mining thesbasds.

The road user detection and tracking module useabtdrsystem described in this paper
relies on a feature-based tracking method thatnestéo intersections the method described in



(11). In this approach, distinguishable pointsines in the image are tracked: a moving object
may have multiple features, which must be groupeaéch object. A detailed description of the
tracking algorithm is presented in (17). The altjon relies on world coordinates through the
estimation of the homography matrix. The trackirgrumacy for motor vehicles has been
measured between 84.7% and 94.4% on three diffeetatof sequences (pedestrians and two-
wheels may also be tracked, but less reliably)s Theans that most trajectories are detected by
the system, although overgrouping and oversegmentadtill happens and creates some
problems. The most important limitation for trafitonflict detection is the inaccuracy in the
estimation of road user sizes.

Trajectories provided by the first module are usedsubsequent modules to extract
relevant information. A first system was develogeddetect directly traffic conflicts using
HMM-based semi-supervised machine learning teclesq@6). To apply the probabilistic safety
framework presented in this paper, it is necessarpe able to predict road users’ future
positions. Motion patterns, represented by actuailopype trajectories without any special pre-
processing, are learnt incrementally using the esh@ommon Sub-sequence Similarity (LCSS)
(26). The description of the motion pattern leagnatgorithm is beyond the scope of this paper
and is described in detail in (27). The motion grattprobabilities are computed by matching all
trajectories over a given period of time using LC&8d can be updated continuously in a real-
time application, as traffic patterns change iretihen computing the collision probability, the
partial trajectories of each considered road useaeh time are matched against the set of learnt
prototypes using the LCSS.

EXPERIMENTAL RESULTS

The core architecture of the system has been ingleed, using the Intel OpenCV
library? . On the contrary to (22) which uses toy cars,ptesent work is tested on real traffic
video data, and a few traffic conflict instancesnitified by trained traffic conflict observérs

Three sets of data are used. The first is a sétafific sequences on the same location
initially used for the training of traffic confliadbservers in the 1980s. Their length ranges from
10 seconds to 60 seconds. This “Conflict” set dost2941 feature trajectories of a minimum
length of 40 frames, and 327 road user trajectoflibe second dataset is composed of two long
sequences, each close to one hour long, recordad mtersection in the Twin Cities (United
States), in Minnesota. This “Minnesota” set corga®®255 feature tracks of a minimum length
of 40 frames, and 11734 road user trajectories. thind dataset is composed of 6 sequences,
each about 20 minutes long, recorded in Reggioalal@ia (south Italy). This “ltaly” dataset
contains 138009 feature tracks of a minimum length40 frames, and 9849 road user
trajectories..

First the motion patterns are learnt from the fematinajectories, which are smoothed
using a Kalman filter beforehand. It is difficuit €valuate such an unsupervised task. The learnt
prototypes for the datasets are presented in FRjufihe visual examination of the motion
patterns suggests a plausible division of the ¢tajg space. Traffic patterns are well identified,
and the traffic volumes are consistent with obstma

Traffic Conflict Study

*http://sourceforge. net/ projects/opencvlibrary/
3Additional experimental results are available atalddress
http://ww. confins. net/sauni er/data/sauni er07trb. htm .



Since only a few traffic conflict instances are ifalde in the Conflict dataset, only
preliminary results obtained for the three detdetataffic conflict instances are reported in this
paper (these three traffic conflict instances bgltmthree sequences of the Conflict dataset). It
appears that the prototype trajectories are watiedufor the computation of the collision
probability. An example of movement prediction regented for one conflict in Figure 4.

The curves of the collision probability as a fuoatiof time, computed using formula 2,,
are displayed for the three traffic conflicts irgéie 5. For each of these instances, one vehicle is
over-segmented, resulting in two trajectories, #ne two traffic events (and two curves). It
appears that the collision probability shows aneexgd evolution over time, starting with low
values, increasing until the probability of coldisi reaches a maximum, to decrease afterward,
often truncated due to tracking errors and disaipri@ectories.

Over-segmentation of tracked road users can caag& problems. The same road user
detected twice can entail the detection of an aution between two very close “imaginary” road
users, often with very high computed collision @bitity. Fortunately, these interactions are
mostly filtered out by testing for the similaritgtwveen the trajectories of interacting road users
using the LCSS distance. In two of the three secerrontaining traffic conflicts, querying
interactions for which the severity index is supeto 0.1 returns only the traffic conflicts. For
the third sequence, it returns the traffic confiietd some interactions between road users in
traffic moving in opposite directions. Querying thther sequences that contain no detectable
traffic conflicts also return these “normal” intetimns that can be easily identified. This shows
that traffic conflict detection can be achieved dymputing the collision probability. Adding
other severity indicators will further improve ttetection results.

Severity Indices

Using formula 5, the severity indices of all intelfans are computed for the sequences of
the Minnesota and Italy datasets, which are bothentitan one hour long. The distributions of
the interaction according to their severity indiegs represented individually for each sequence
of the two datasets in the Figure 6. As expecteel distributions exhibit the shape of the safety
hierarchy, with the frequency of events decreasasgthe severity increases. The different
sequences in each dataset exhibit different digtabs. For example, more interactions for all
level of severity are observed in the sequence theanMinnesota dataset. This type of analysis
could be performed to compare different situatidos example in before and after studies. It is
also possible to study interactions by their looadi by building severity maps, and therefore
analyze particular problems in the intersection.

CONCLUSIONS AND FUTURE WORK

This paper presents a comprehensive probabilisimdéwork for automated road safety
analysis. It provides computation definitions ok throbability of collisions for road users
involved in an interaction, extending the work 8R) to an individual collision probability and
aggregated measures over time. By integratingitaimsework into a complete system for vision-
based road safety analysis, it is shown that tde8aitions are suitable for an automated system.
This provides detailed severity measures, exposstienates and a method to detect and study
traffic conflicts. The system is demonstrated usiegl traffic data, including some traffic
conflict instances, illustrating the approach asdisefulness.

New data is currently being collected to expand rdmults and validate the computed
measures. Further research is needed to investigatevalidate the relationship of collision
probability to safety.
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LIST OF FIGURES
FIGURE 1 In this simplified situation, two vehicles approach a T intersection at time t.
Only two extrapolation hypotheses are considered for each vehicle. Vehicle 1 is expected to
turn left or right, with respective probabilities 0.4 and 0.6. Vehicle 2 is expected to go
straight or turn left, with respective probabilities 0.7 and 0.3. There are two potential
collision points, that can happen at times t; and t,. The collision probability at time tp is
(ti—to)? (t;~to)?
computed as P(Collision) = 04x 07xe 2°° +04x03xe 27°
FIGURE 2 Overview of a modular system for vision-based automated road safety analysis.
FIGURE 3 Motion patterns learnt respectively on sequences of the Conflict dataset (top),
the Minnesota dataset (bottom left) and the Italy dataset (bottom right), resulting
respectively in 58, 128 and 58 prototype trajectories. The tracks are displayed in color,
from white to red indicating the number of matched trajectories in the sequence for each
pattern, i.e. thetraffic volume along these patterns.
FIGURE 4 An example of movement prediction in a real traffic conflict situation
(Sequence 1, Seetop plot in Figure5). The vehicle trajectories are red and blue, with a dot
marking their position, and the future positions ar e r espectively cyan and yellow.
FIGURE 5 Graphs of the collision probability for the three traffic conflicts (collected in
three separate sequences), as a function of time (counted in frame numbers). In all
sequences, vehicle 1 travels south-bound through the inter section and vehicle 2 comes from
an opposing approach. Vehicle 2 turns left in sequence 1 (top) (See Figure4), right in
sequence 2 (middle) and stopsin sequence 3 (bottom).
FIGURE 6 Distribution of the interactions according to their severity indices (with a zoom
on the higher severities), quantified by 0.1 (the point at severity index x stands for the
number of interactions with severity index between x-0.1 and x), for the sequences of the
Minnesota dataset (top) and the Italy dataset (bottom).
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FIGURE 1 In this simplified situation, two vehicles approach a T intersection at time to.

Only two extrapolation hypotheses are considered for each vehicle. Vehicle 1 is expected to

turn left or right, with respective probabilities 0.4 and 0.6. Vehicle 2 is expected to go

straight or turn left, with respective probabilities 0.7 and 0.3. There are two potential

collision points, that can happen at times t; and t,. The collision probability at time ty is
(ti=t)? (t~t)*

computed as P(Collision) = 04x07xe 2° +04x03xe 27°
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FIGURE 2 Overview of a modular system for vision-based automated road safety analysis.
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FIGURE 3 Motlon patterns Iearnt respectlvely on sequences of the Conflict dataset (top)
the Minnesota dataset (bottom left) and the Italy dataset (bottom right), resulting
respectively in 58, 128 and 58 prototype trajectories. The tracks are displayed in color,
from white to red indicating the number of matched trajectories in the sequence for each

pattern, i.e. thetraffic volume along these patterns.
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FIGURE 4 An example of movement prediction in areal traffic conflict situation
(Sequence 1, Seetop plot in Figure 5). Thevehicletrajectoriesarered and blue, with a dot
marking their position, and the future positions are r espectively cyan and yellow.

14



Collision Probability (Sequence 1)

170 180 190 200

Frame Number

Collision Probability (Sequence 2)
0.6

05 | + *
A
\

0.4 1% o4

03} |

Frame Number

Collision Probability (Sequence 3)
0.25

0.2t

0.15

0.05

100 105 110 115 120

Frame Number

FIGURE 5 Graphs of the collision probability for the three traffic conflicts (collected in
three separate sequences), as a function of time (counted in frame numbers). In all
sequences, vehicle 1 travels south-bound through the intersection and vehicle 2 comes from
an opposing approach. Vehicle 2 turns left in sequence 1 (top) (See Figure4), right in
sequence 2 (middle) and stopsin sequence 3 (bottom).
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FIGURE 6 Distribution of the interactions according to their severity indices (with a zoom
on the higher severities), quantified by 0.1 (the point at severity index x stands for the
number of interactions with severity index between x-0.1 and x), for the sequences of the
Minnesota dataset (top) and the Italy dataset (bottom).
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