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Abstract— This work aims at addressing the many problems
that have hindered the development of vision-based systems
for automated road safety analysis. The approach relies on
traffic conflicts used as surrogates for collision data. Traffic
conflicts are identified by computing the collision probability
for any two road users in an interaction. A complete system is
implemented to process traffic video data, detect and track
road users, and analyze their interactions. Motion patterns
are needed to predict road users’ movements and determine
their probability of being involved in a collision. An original
incremental algorithm for the learning of prototype trajectories
as motion patterns is presented. The system is tested on real
world traffic data, including a few traffic conflict instances.
Traffic patterns are successfully learnt on two datasets, and
used for collision probability computation and traffic conflict
detection.

I. INTRODUCTION

Traffic safety is one of the major world health problems.
According to the World Health Organization, 1.2 million peo-
ple were killed in road traffic crashes in 2002, and between
20 millions and 50 million were injured [1]. Traffic safety
diagnosis has been traditionally undertaken using historical
collision data. However, there are well-recognized problems
of availability and quality associated with collision data. In
many jurisdictions, the quantity and quality of collision data
has been degrading for several years. Additionally, the use of
collision records for safety analysis is a reactive approach: a
significant number of collisions have to be recorded before
action is taken. Because of these problems, the observation
of traffic conflicts has been advocated as an alternative or
complementary approach to analyze traffic safety from a
broader perspective than collision statistics alone [2], [3],
[4], [5], [6], [7]. Traffic Conflict Techniques (TCTs) involve
observing and evaluating the frequency and severity of traffic
conflicts at an intersection by a team of trained observers.
A conflict is defined as “an observational situation in which
two or more road users approach each other in space and
time to such an extent that a collision is imminent if their
movements remain unchanged” [8]. While the monitoring of
the traffic conflicts occurring in a given location for a few
hours is sufficient to assess its safety, the main drawbacks of
TCTs are the data collection costs, and the subjectivity and
reliability of observers.

Automated systems are needed to address these issues
which hinder the wider use of TCTs. Some of the most
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promising approaches rely on video sensors and intelligent
techniques to interpret video data, including computer vision
and machine learning. Vision-based systems for traffic mon-
itoring would reduce the workload of human operators, help
improve our understanding of traffic behaviour and further
address the many problems that plague the road networks,
such as congestion and collisions. Video sensors for traffic
monitoring have a number of advantages, among which are
the ease of installation, the possibility to get rich traffic
description, and the scope of the areas covered by a camera.

This work aims at building a complete system for au-
tomated road safety analysis, by detecting traffic conflicts
in video data. To detect traffic conflicts, the probability of
collision for any two interacting road users can be computed
using definitions and techniques adapted from [9]. This
computation requires the learning of typical motion patterns
to predict future positions and the occurrence of collision.
This work presents an original incremental algorithm for
the learning of motion patterns for motion prediction, with
distinct advantages over the offline method of [9]. The next
section of this paper discusses traffic conflicts and severity
indicators, and provides computational definitions in a prob-
abilistic framework that can be used in an automated system.
The third section describes the implementation of a vision-
based system that automatically detects traffic conflicts in
intersections, using the definitions provided in the first sec-
tion. The fourth section describes an original algorithm for
motion pattern learning. Experimental results on real world
video data are presented in the last section. Related work is
introduced in each part.

II. A COMPUTATIONAL PERSPECTIVE ON
TRAFFIC CONFLICTS

A. Traffic Conflicts and Severity Indicators

The concept of traffic conflicts was first proposed by
Perkins and Harris in 1968 [10] as an alternative to colli-
sion data, which in many cases were scarce, unreliable, or
unsatisfactory. Their objective was to define traffic events or
incidences that occur frequently, can be clearly observed,
and are related to collisions. The widely used definition
of traffic conflict given in the introduction highlights the
importance of the collision course. Users are defined to be
on a collision course when, “unless the speed and/or the
direction of the road users changes, they will collide” [6].
Deciding if two road users are on a collision course thus
depends on extrapolation hypotheses. The definition of [6]
uses the common hypothesis of extrapolation with constant
velocity, i.e. speed and direction. Some definitions of traffic



conflicts also include that at least one of the road users
involved takes an evasive action, often in emergency.

Theories about traffic describe the relationship between
traffic conflicts and collision, which must be established to
use traffic conflicts as surrogates to collisions for safety anal-
ysis. Many researchers, especially in Scandinavian countries
[2], [6], assume that all interactions can be ranked in a safety
hierarchy, with collisions at the top. An interaction is defined
as an observational situation in which two or more road
users are close enough in space and time. The interactions
located next to the collisions in the safety hierarchy are
often called quasi-collisions. The interactions can thus be
recursively ranked in the safety hierarchy (See Figure 1).
For this concept to be operational, the safety hierarchy
is transferred into measurable parameters based on certain
assumptions. For each interaction in the hierarchy, a severity
can be estimated, matching its location in the hierarchy, i.e.
measuring the proximity to the potential occurrence of a
collision, which is related to the probability of collision.
Many severity indicators have been developed (See for
example [3] for extensive reviews and discussions), e.g. the
Time-To-Collision (TTC), defined for two road users on a
collision course as the extrapolated time for the collision to
occur, or the Post-Encroachment Time (PET), defined as the
time measured from the moment the first road user leaves
the potential collision point to the moment the other road
user enters this point.
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Fig. 1. The safety hierarchy, as presented in [2].

Traffic conflicts are interactions between road users on
a collision course. When road users are in an interaction,
various chains of events can lead to a collision, as opposed
to one path for each road user with constant velocity [6].
The collision course is not a binary concept. It can be
properly analyzed in a probabilistic framework by taking
into account all possible movements of the road users to
compute the collision probability. The collision probability
can be considered as the normalized severity dimension
of the safety hierarchy. When road users do not have the
physical possibility to avoid a collision, the collision will
occur, i.e. the probability of collision is 1.

B. How to Compute the Collision Probability

The formulas presented in this part are based on [9], and to
a lesser extent on [11]. The collision probability for a given
interaction between two road users can be computed at a
given instant by summing the collision probability over all

possible motions that lead to a collision, given the road users’
states. This requires the ability to generate for each road user
at any instant a distribution over its possible future positions
given its previous positions. A possible future motion, i.e.
a temporal series of predicted positions, defines an extrap-
olation hypothesis. The collision probability computation is
approximated by a discrete sum when taking into account a
finite number of the most probable extrapolation hypotheses.

First the collision probability at time t0 for two road users
A1 and A2 with respective observed trajectories Q1,t≤t0 and
Q2,t≤t0 (before t0) is defined when considering only one
extrapolation hypothesis for each, respectively Hi and Hj .
The predicted positions according to the hypotheses Hi and
Hj are computed for a number of time steps: the predicted
time of the collision ti,j is the first instant at which the
road users would be in contact. The larger ∆i,j = ti,j −
t0, the more likely the road users can react and avoid the
collision. This time takes into account speed and distance and
is directly measurable against the road users’ reaction times.
The formula of the probability of collision given hypotheses
Hi and Hj is taken from [9]

P (Collision(A1, A2)|Hi,Hj) = e−
∆2

i,j

2σ2 (1)

where σ is a normalizing constant. It is estimated in [9]
that this probability should change when the elapsed time
∆i,j is close to the road user reaction time. Therefore σ is
chosen to be equal to an average user reaction time1. Based
on [9], the collision probability for two road users A1 and
A2 at t0 is

P (Collision(A1, A2)|Q1,t≤t0 , Q2,t≤t0) =∑
i,j

P (Hi|Q1,t≤t0)P (Hj |Q2,t≤t0) e−
∆2

i,j

2σ2

(2)
where P (Hi|Q1,t≤t0) is the probability of road user A1

to move according to extrapolation hypothesis Hi (same for
A2 and Hj). The sum is done over a variety of extrapolation
hypotheses, although this number must be limited to maintain
reasonable computation times. This formula is illustrated in a
simplified example in Figure 2. The expected values of tradi-
tional severity indicators such as the TTC can be introduced
in this probabilistic framework. In a traditional TCT, one
could choose a threshold on collision probability and other
indicators to define traffic conflicts. In the new approach
described in this paper, road safety can be automatically
analyzed in detail by computing continuously the collision
probability of all interactions. This allows detailed traffic and
road safety analysis by taking into account interactions of
all severity, similarly to the pioneering work of [6]. Detailed
exposure measurements can thus be obtained for use in many
traffic engineering applications. The next sections describe
the implementation of a vision-based system that makes use
of these formulas, including a method to learn the motion

1A value of 1.5 seconds is chosen for the experiments described in this
paper.



patterns of road users from traffic data in order to generate
extrapolation hypotheses. The probabilities of extrapolation
hypotheses are also automatically learnt.
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Fig. 2. In this simplified situation, two vehicles approach a T intersection at
time t0. Only two extrapolation hypotheses are considered for each vehicle.
Vehicle 1 is expected to turn left or right, with respective probabilities 0.4
and 0.6. Vehicle 2 is expected to go straight or turn left, with respective
probabilities 0.7 and 0.3. There are two potential collision points, that can
happen at times t1 and t2. The collision probability at time t0 is computed

as P (Collision) = 0.4× 0.7× e
− (t1−t0)2

2σ2 + 0.4× 0.3× e
− (t2−t0)2

2σ2 .

III. OVERVIEW OF A VISION-BASED SYSTEM
FOR AUTOMATED ROAD SAFETY ANALYSIS

Despite the potential benefits of automated traffic safety
analysis based on video sensors, limited computer vision
research has been directly applied to road safety [12], [9],
[11], [13], [14], and even less so to the detection of traffic
conflicts. Maurin et al. state in [15] that “despite significant
advances in traffic sensors and algorithms, modern moni-
toring systems cannot effectively handle busy intersections”.
Such a system requires a high level understanding of the
scene and is traditionally composed of two levels of modules
(see Figure 3):

1) a video processing module for road user detection and
tracking,

2) interpretation modules for traffic conflict detection.
For road safety applications, our approach relies on the

building of two databases: a trajectory database, where the
results of the video processing module are stored, and an in-
teraction database, where all interactions between road users
within a given distance are considered, and for which various
indicators, including collision probability and other severity
indicators, are automatically computed. Identifying traffic
conflicts and measuring other traffic parameters becomes the
problem of mining these databases.

The road user detection and tracking module used in the
system described in this paper relies on a feature-based
tracking method that extends to intersections the method
described in [16]. In this approach, distinguishable points
or lines in the image are tracked: a moving object may
have multiple features, which must be grouped for each
object. A detailed description of the tracking algorithm is

●Motion Patterns
●Volume, Origin-
Destination Counts
●Driver Behavior
●...

Trajectory Database Interaction Database

●Traffic Conflict 
Detection
●Exposure 
Measures
●Interacting 
Behavior
●...

Image Sequence

Interpretati
on Modules

Fig. 3. Overview of a modular system for vision-based automated road
safety analysis.

presented in [17]. The tracking accuracy for motor vehicles
has been measured between 84.7% and 94.4% on three
different sets of sequences (pedestrians and two-wheels may
also be tracked, but less reliably). This means that most
trajectories are detected by the system, although overgroup-
ing and oversegmentation still happens and creates some
problems. The most important limitation for traffic conflict
detection is the inaccuracy in the estimation of road users’
sizes. Because of this inaccuracy, the center of each group of
features is currently used for each road user, and a treshold
on distances Dcollision is used to determine a potential future
collision (to determine the predicted collision time used in
Equation (1)).

IV. MOTION PATTERN LEARNING FOR MOTION
PREDICTION

As stated in the previous section, our approach requires
the ability to generate for each road user at any instant
a distribution over its possible future positions given its
previous positions. A large number of outcomes are possible.
However, road users do not move randomly. Instead of
using default extrapolation hypotheses, knowledge about the
typical road user motions can be used, e.g. the possible turns
in an intersection. Regular typical movements, called motion
patterns, in a given location can be learnt from a given set
of observed trajectories, in order to propose more realistic
and accurate motion prediction.



A. Related Work

Similarly to trajectory clustering algorithms [18], a method
to learn motion patterns must address three problems:
• choose a suitable data representation of motion patterns,
• define a distance or similarity measure between trajec-

tories or between trajectories and motion patterns,
• define a method to update the motion patterns.
Although this is a fairly new research area, significant

work has already been done. A good overview can be
found in [19]. In [20], the probability density functions
of object trajectories generated from image sequences are
learnt using self organizing neural networks. Movement is
described as a sequence of flow vectors, i.e. four-dimensional
vectors consisting of the object position and velocity. Such
methods require long learning processes and were considered
to be ill-suited for motion prediction. An improved self
organizing map is used in [9]. Without justification, the
authors later abandoned this approach in favor of the fuzzy
K-means algorithm in [19]. Collision probability estimation
is presented only in [9].

The unsupervised approach presented in [21] relies on
an online quantification of the vector representations of
tracked moving objects, considered in a set without temporal
information. A hierarchical classification is done on the
accumulated co-occurrence in the trajectories, which yields
interpretable clusters of activities. It is not clear how motion
prediction can be achieved. Similarly, a semantic scene
model is learnt by trajectory analysis and clustering in [22],
which allows to detect abnormal activities.

In [23], laser range data collected indoor is clustered using
sequences of Gaussian distributions with a fixed standard
deviation. A hidden Markov model (HMM) is derived for
movement prediction. A similar cluster model is used in
[18], where clusters are organized in a tree-like structure
that, when augmented with probability information, can be
used for behaviour analysis, e.g. anomalous events. This is
one of the few works focusing on incremental learning for
online use. Path models are learnt in [24] to identify and
analyze entry/exit/junction zones and routes. Many trajectory
clustering algorithms rely on HMM models [25], [26], [27].
Various similarities or distance measures between trajectories
have been used, from the Euclidean distance [28], to dynamic
time warping (DTW), the longest common sub-sequence
similarity (LCSS) [29], [30], and distances derived from the
Hausdorff distance [31]. Others advocate indirect sequence
clustering, using an intermediate space to represent the
trajectories, such as the Fourier coefficients [32].

B. An Incremental Algorithm to Learn Trajectory Prototypes

The choices of all three elements, a suitable data represen-
tation for motion patterns, a distance, and a method to update
motion patterns, depend on each other. To accommodate
many learning algorithms, the trajectories must often be
pre-processed, e.g. re-sampled (by linear interpolation) or
padded with default values (repeating the last position or
extrapolating the last position with constant direction and

speed) [9], [23]. Such pre-processing is detrimental for our
application as it discards velocity information or distorts the
data. Methods that require such pre-processing are therefore
avoided. Non-destructive pre-processing such as smoothing
can be employed if needed.

Since no pre-processing is done, one needs methods
that can naturally handle variable length sequential data.
Trajectories obtained from video data are also noisy, they
don’t start in the same areas and can be truncated or cut
into multiple sub-trajectories because of tracking errors and
occlusion. Indirect sequence clustering is inherently unsuited
for the representation of highly complex trajectories. Various
similarity measures for sequential data have been proposed
in the literature. Distances based on the Euclidean distance
are reviewed in [33] and found too simple to accommodate
noisy and partial trajectories. The edit distance has such
advantages. Primarily used for nominal sequences, it has
been extended for numerical sequences in various ways, such
as DTW, LCSS and the Edit Distance on Real sequences
[34]. It is argued in [30] that LCSS is less sensitive to noise
than other sequence similarity methods, as some sequence el-
ements can be unmatched (which is very useful for outliers).
The intuitive idea of the LCSS is to match two sequences by
allowing them to stretch, without rearranging the sequence of
the elements, but allowing some elements to be unmatched.

A trajectory is noted Qi = {qi,1, ...qi,n} where
qi,k = (xi,k, yi,k) are the object position coordinates2. Let
Head(Qi) be the sequence {qi,1, ...qi,n−1}. Given a real
positive number ε, the LCSS similarity of two trajectories
Qi and Qj of respective lengths m and n, LCSSε(Qi, Qj)
is defined as
• 0 if m = 0 or n = 0,
• 1 + LCSSε(Head(Qi),Head(Qj)) if the points qi,n

and qj,m match,
• max(LCSSε(Head(Qi), Qj), LCSSε(Qi,Head(Qj)))

otherwise.
Two points qi,k1 and qj,k2 match if |xi,k1 − xj,k2 | < ε

and |yi,k1 − yj,k2 | < ε (ε is the matching threshold). Other
conditions can be added to enforce similarity between the
trajectories, e.g. on the velocity or object size. A parameter
β is added in [30] to controls how far in time it can
go in order to match a given point from one trajectory
to a point in another trajectory. This is not used in this
work because a trajectory and its truncated sub-trajectory
(e.g. truncated at the beginning by more than β points)
will not always be similar with such a definition, which
is crucial to accommodate trajectories reconstituted from
video data. To be independent of the trajectory lengths,
LCSSε(Qi, Qj) is normalized by the minimum length of Qi

and Qj , and a distance is defined as DLCSSε(Qi, Qj) =
1 −

(
LCSSε(Qi,Qj

min(n,m)

)
. The LCSS can be computed by a

dynamic programming algorithm in O(nm). Using trajectory
bounds avoids unnecessary computations if trajectories are

2Coordinates are in either the image or the world two-dimensional space
(if homography information is available). Other features such as size can
be added.



too far away.
Distances between trajectories are computed using the

LCSS distance. There are many similarity-based clustering
algorithm, such as spectral clustering methods. However,
clustering is not a practical approach for motion prediction.
The clusters need to be aggregated, summarized in some way
that can be readily used for motion prediction. There is no
easy way of “mixing”, or averaging, a set of trajectories,
even if they are similar. The idea presented here is to use
trajectories of the learning set, without modifying them, and
to update the prototypes by keeping the longest trajectories,
as they will be the most useful for accurate motion prediction
(See Algorithm 1).

Input: A set of trajectories Q = {Qi}, the allowed
matching distance ε in the LCSS similarity definition,
and the maximum LCSS distance δ for two trajectories
to match (0 ≤ δ ≤ 1).
Output: A set of prototype trajectories P = {Pj}.
for all Trajectory Qi do

for all Prototype Pj in P do
Compute DLCSSε(Qi, Pj).
if DLCSSε(Qi, Pj) < δ AND Pj is shorter than Qi

then
Pj is removed from P .

if Qi didn’t match any prototype OR Qi matched at
least one shorter prototype then

Qi is added to P .

Algorithm 1: Algorithm for the learning of trajectory pro-
totypes.

In this algorithm, the number of motion patterns is not
required, and the parameters are limited to the allowed
matching distance ε in the LCSS similarity definition and
the maximum LCSS distance δ for two trajectories to match
(0 ≤ δ ≤ 1). ε controls the granularity and the number of
learnt motion patterns, and must be tuned depending on the
intersection and the application. More motion patterns will
entail a higher computational cost for motion prediction, but
also offer higher resolution and accuracy. δ has a low value,
typically between 0.05 and 0.1, to allow for very limited
mismatch between trajectories.

In an online situation, the trajectories are processed as
they become available, and will thus adapt to changing
traffic patterns. In an offline situation, the set of training
trajectories Q can be randomly accessed. There is no need
to process all trajectories systematically to learn the motion
patterns. In such an unsupervised task, large amounts of
data are available, and one can assume that in the long
run, trajectories representing all motion patterns will be
considered in the learning process. Therefore, one can afford
to be cautious and select the trajectories to use for motion
learning, as it is done in [31]. Regularity conditions can
be used to avoid trajectories resulting from tracking errors.
In the system presented here, feature tracks with unrealistic
abrupt turns and large accelerations are discarded in the road
user detection and tracking module, and only a minimal

length is subsequently enforced. Furthermore the reconsti-
tuted road user trajectories are the result of averaging various
feature tracks disrupted at different times. Therefore, they are
noisier and less numerous than feature tracks, which are used
instead as input to the algorithm. During the learning process,
which can run online continuously, the number of matched
trajectories is stored for each prototype, which allows the
computation of probabilities of extrapolation hypotheses,
required to compute collision probabilities.

C. Using the Learnt Motion Patterns for Collision Probabil-
ity Computation

Given a set P = {Pj} of prototype trajectories repre-
senting motion patterns, including matching counts for each
motion pattern, the collision probability is computed for
each interaction at time t0. The extrapolation hypotheses
are obtained by matching the trajectory Qi of each object
Ai with the prototypes (using a maximum matching LCSS
distance δ). The matched prototypes are translated to a point
on the object (e.g. the object center) and re-sampled using
the speed of the object: this provides a set of predicted
positions. An extrapolation hypothesis Hj is determined by
a matched prototype, a road user point and a speed. A
variety of hypotheses for each prototype can be obtained by
using varied points and speeds. Equation (2) is computed
by summing over all extrapolation hypotheses. Currently,
only the road user position and speed measured by the
tracking module are used as this requires already significant
computation.

V. EXPERIMENTAL RESULTS

The core architecture of the system has been implemented,
using the Intel OpenCV library3. The road user detection and
tracking module presented in [17] processes the video data
and extracts the feature and road user trajectories. On the
contrary to [9] which uses toy cars, the present work is tested
on real traffic video data, and a few traffic conflict instances
identified by trained traffic conflict observers4. Two sets of
data are used. The first is a set of traffic sequences on the
same location initially used for the training of traffic conflict
observers in the 1980s. Their length ranges from 10 seconds
to 60 seconds. Despite the videotape age, the approximate
alignment of the field of view between sequences, and
occasional camera jitter, it could be digitized and used to
test our method. This “Conflict” set contains 2941 feature
trajectories of a minimum length of 40 frames, and 327 road
user trajectories. The second dataset is a long sequence, close
to one hour, recorded at an intersection in the Twin Cities,
in Minnesota5. This “Minnesota” set contains 47084 feature
tracks of a minimum length of 40 frames, and 6242 road
user trajectories.

3http://sourceforge.net/projects/opencvlibrary/
4Additional experimental results are available at the address http://

www.confins.net/saunier/data/saunier07itsc.html.
5The authors gratefully acknowledge Stefan Atev from the University of

Minnesota in the Twin Cities who provided us with the video sequences of
the Minnesota dataset.
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Fig. 4. Prototype trajectories learnt respectively on the Minnesota sequence
(top) and the ten sequences for the training of traffic conflict observers
(bottom), resulting in respectively 128 and 58 prototype trajectories. The
tracks are displayed in color, from white to red indicating the number of
matched trajectories in the sequence for each pattern, i.e. the traffic volume
along these patterns.

First the motion patterns are learnt from the feature
trajectories using Algorithm 1, which are smoothed using
a Kalman filter beforehand. It is difficult to evaluate such an
unsupervised task. The learnt prototypes for the two datasets
are presented in Figure 4. The visual examination of the
motion patterns suggests a plausible division of the trajectory
space. Traffic patterns are well identified, and the traffic
volumes are consistent with observation.

The results should be analyzed with respect to the appli-
cation: motion prediction for traffic safety analysis. Since
only a few traffic conflict instances are available in the
Conflict dataset, only preliminary results obtained for the
three detectable traffic conflict instances are reported in
this paper. Traffic conflicts involving two wheels cannot be
studied as their trajectories are not reliably detected because
of the video data quality. It appears that the prototype tra-
jectories are well suited for the computation of the collision
probability. An example of movement prediction is presented
for one conflict in Figure 5. The curves of the computed
collision probability as a function of time, for the three
traffic conflicts, are displayed in Figure 6. For each of these
instances, one vehicle is over-segmented, resulting in two
trajectories, and thus two traffic events (and two curves).
It appears that the collision probability shows an expected
evolution over time, starting with low values, increasing
until the probability of collision reaches a maximum, to
decrease afterward, often truncated due to tracking errors
and disrupted trajectories.

Over-segmentation of tracked road users can cause major
problems. The same road user detected twice can entail the

N

Fig. 5. An example of movement prediction in a real traffic conflict
situation (Sequence 1, See left plot in Figure 6). The vehicle trajectories
are red and blue, with a dot marking their position, and the future positions
are respectively cyan and yellow.

detection of an interaction between two very close “imag-
inary” road users, often with very high computed collision
probability. Fortunately, these interactions are mostly filtered
out by testing for the similarity between the trajectories of
interacting road users using the LCSS distance. In two of the
three sequences containing traffic conflicts, querying interac-
tions for which the collision probability reaches values above
0.1 returns only the traffic conflicts. For the third sequence, it
returns the traffic conflict and some interactions between road
users in traffic moving in opposite directions. Querying the
other sequences that contain no detectable traffic conflicts
also return these “normal” interactions that can be easily
identified. This shows that traffic conflict detection can be
achieved by computing the collision probability. Adding
other severity indicators will further improve the detection
results.

VI. CONCLUSION

This paper has presented the development of a complete
vision-based system for automated road analysis. After dis-
cussing traffic conflicts and defining a computable collision
probability, a new incremental learning algorithm of motion
patterns for motion prediction was introduced. The approach
relies on the use of actual trajectories as motion patterns,
or prototypes, and the LCSS to compare trajectories. This
method has distinct advantages: it does not require any
special pre-processing of trajectories, it is incremental and
therefore suitable for online use, and requires limited tuning
to produce useful results. The system was tested on extensive
real traffic video data, and a few traffic conflict instances.
It demonstrated that automated traffic conflict detection can
be achieved by computing the collision probability. Future
work will focus on the estimation of road users’ sizes and
detection of over-segmented road users. We are in the midst
of commencing in a comprehensive validation of the traffic
conflict detection algorithms developed to-date. This work is
expected to be reported in future publications.

REFERENCES

[1] World Health Organization, “World report on road traffic injury pre-
vention: Summary,” http://www.who.int/violence injury prevention/
road traffic/en/, 2004.



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 130  140  150  160  170  180  190  200

Frame Number

Collision Probability (Sequence 1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 420  425  430  435  440  445  450  455  460  465

Frame Number

Collision Probability (Sequence 2)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 100  105  110  115  120  125  130  135

Frame Number

Collision Probability (Sequence 3)

Fig. 6. The collision probability for the three traffic conflicts, as a function of time (counted in frame numbers). In all sequences, vehicle 1 travels
south-bound through the intersection and vehicle 2 comes from an opposing approach. Vehicle 2 turns left in sequence 1 (left) (See Figure 5), right in
sequence 2 (middle) and stops in sequence 3 (right).

[2] C. Hydén, “The development of a method for traffic safety evaluation:
The swedish traffic conflicts technique,” Ph.D. dissertation, Lund
University of Technology, Lund, Sweden, 1987, bulletin 70.

[3] R. van der Horst, “A time-based analysis of road user behavior in
normal and critical encounter,” Ph.D. dissertation, Delft University of
Technology, 1990.

[4] G. R. Brown, “Traffic conflict for road user safety studies,” Canadian
Journal of Civil Engineering, vol. 21, pp. 1–15, 1994.

[5] T. Sayed, G. R. Brown, and F. Navin, “Simulation of Traffic Conflicts
at Unsignalised Intersections with TSC-Sim,” Accident Analysis &
Prevention, vol. 26, no. 5, pp. 593–607, 1994.

[6] A. Svensson, “A method for analyzing the traffic process in a safety
perspective,” Ph.D. dissertation, University of Lund, 1998, bulletin
166.

[7] T. Sayed and S. Zein, “Traffic conflict standards for intersections,”
Transportation Planning and Technology, vol. 22, pp. 309–323, 1999.

[8] F. Amundsen and C. Hydén, Eds., Proceedings of the first workshop
on traffic conflicts. Oslo, Norway: Institute of Transport Economics,
1977.

[9] W. Hu, X. Xiao, D. Xie, T. Tan, and S. Maybank, “Traffic accident
prediction using 3d model based vehicle tracking,” IEEE Transactions
on Vehicular Technology, vol. 53, no. 3, pp. 677–694, May 2004.

[10] S. R. Perkins and J. I. Harris, “Traffic conflicts characteristics: Acci-
dent potential at intersections,” Highway Research Record, vol. 225,
pp. 35–43, 1968, highway Research Board, Washington D.C.

[11] S. Messelodi and C. M. Modena, “A computer vision system for traffic
accident risk measurement: A case study,” ITC, Tech. Rep. ITC-irst
T05-06-07, 2005.

[12] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Traffic
monitoring and accident detection at intersections,” IEEE Transactions
on Intelligent Transportation Systems, vol. 1, no. 2, pp. 108–118, June
2000.

[13] S. Atev, H. Arumugam, O. Masoud, R. Janardan, and N. P. Pa-
panikolopoulos, “A vision-based approach to collision prediction at
traffic intersections,” IEEE Transactions on Intelligent Transportation
Systems, vol. 6, no. 4, pp. 416– 423, Dec. 2005.
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