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Tracking All Road Users at Multimodal Urban
Traffic Intersections

Jean-Philippe Jodoin, Guillaume-Alexandre Bilodeau and Nicolas Saunier

Abstract—Because of the large variability of road user ap-
pearance in an urban setting, it is very challenging to track
all of them with the purpose of obtaining precise and reliable
trajectories. However, obtaining the trajectories of the various
road users is very useful for many transportation applications.
It is in particular essential for any task that requires higher level
behaviour interpretation, including new safety diagnosis methods
that rely on the observation of road user interactions without
a collision and therefore do not require to wait for collisions to
happen. In this work, we propose a tracking method that has been
specifically designed to track the various road users that may
be encountered in an urban environment. Since road users have
very diverse shapes and appearances, our proposed method starts
from background subtraction to extract the potential a priori
unknown road users. Each of these road users is then tracked
using a collection of keypoints inside the detected foreground
regions, which allows the interpolation of object locations even
during object merges or occlusions. A finite state machine handles
fragmentation, splitting and merging of the road users to correct
and improve the resulting object trajectories. The proposed
tracker was tested on several urban intersection videos and
is shown to outperform an existing reference tracker used in
transportation research.

Index Terms—Computer Vision, Multiple Object Tracking,
Road Users, Transportation Engineering, Road safety

I. INTRODUCTION

AMONG the various data collection technologies for road
transportation, video tracking allows acquiring more eas-

ily, at a lower cost and more accurately, larger amounts of data
than what could be done previously by hand. This leads to
advances that can only be achieved by mining large amounts
of observational data. There is a particular interest in road
safety so that diagnosis methods may become more proactive
[1]. Instead of waiting for accidents to occur, these proactive
methods rely on the observation of road user interactions such
as near misses and their safety evaluation using indicators
(“surrogate measures of safety”) such as time to collision that
can be computed from road user trajectories [2]. Observing
road user interactions over a few hours or days is thought to
be sufficient for road safety diagnosis that would otherwise
take years to perform based on historical accident records.
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Although a large body of research has addressed the track-
ing problem, tracking road users at busy urban locations,
in particular intersection, brings its own challenges. Indeed,
recent tracking methods (e.g. [3], [4]) that compute trajectories
by stitching target detections are not applicable because of the
large variety of road users. That is, the shape and appearance
of vehicles and people are very diverse which makes it very
difficult to design a universal road user detector. Furthermore,
the appearance of some road users can be sometime unpre-
dictable (e.g. modified vehicles, cyclists, wheelchairs). As a
result, only motion information can be exploited to detect the
road users, either using optical flow or background subtraction.
In both cases, the detected objects are often fragmented or
merged.

With the aim of designing a tracking method to collect
trajectory data for road safety analysis at busy urban loca-
tions, this paper describes a fully automatic multiple object
tracker, coined Urban Tracker, that is adapted to track various
a priori unknown road users. It should be noted that the
tracker does not have to operate online in real time. Starting
from background subtraction [5], [6], [7], [8], we propose
a method that is based on tracking the resulting foreground
blobs of pixels. Each blob is modelled by a collection of
keypoints. Data association is performed from frame to frame,
and a finite state machine (FSM) corrects the associations
by handling blob merging, splitting and fragmenting. For
increased precision in the location of the road users, keypoint
locations are used to interpolate the position of occluded or
split objects. Experiments show that the proposed method
outperforms a reference tracker, “Traffic Intelligence”, used
in previous road safety studies [9], [2] for large road users
like vehicles and small deformable road users like pedestrians.
This paper extends a previous version of this work presented at
a conference [10] with more detailed explanations and more
experiments, in particular using cross-validation on the five
video scenes to evaluated the trackers’ robustness, which has
never been carried out in video tracking to the best of our
knowledge.

The paper is structured as follows. Section II presents
the background and related works, section III motivates our
approach and describes our method, section IV presents the
experimental results, and section V concludes the paper.

II. BACKGROUND AND RELATED WORKS

Multiple object tracking (MOT) is a very active topic. Most
recent works have focused on the data association problem,
which is one of the most fundamental problem in MOT [11],



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

[3], [4], [12]. In these works, it is assumed that the inputs of
the tracker are object detections. Furthermore, it is assumed
that some detections may be missing and some may be false.
The problem is then to link the detections in such a way
as to ignore false detections and still be able to correctly
associate detections over time even if some are missing for
a few frames. In its most basic form, data association is
performed on a frame-by-frame basis. Greedy or even the well-
known Hungarian algorithm can be used to find the optimal
associations given some metrics on the appearance, position
or speed of the targets [12]. These methods can be applied
online. More sophisticated methods use min-cost network flow
algorithms to find associations over a time window [3], [4] and
are usually applied in offline mode. These methods ignore
the possibility that objects may be fragmented. In the case
of our application, this assumption does not hold because
the appearance of the road users may be unpredictable (e.g.
modified cars, cyclists, pedestrians). As such, a universal
classifier-based object detector cannot be used to detect all
road users. It is therefore necessary to use another type of
detection method that may have the disadvantage of producing
fragmented detections.

In this context, two alternative multiple object class detec-
tion methods are typically used in tracking. The first method
relies on optical flow and groups features that move at similar
speed and direction in the video [13], [9], [14], [15], [16].
The second method relies on background subtraction [17],
[18], [19], [20], which produces detections that are based on
temporal change in the image. In the first case, textureless
objects might not be properly detected or demarcated, while
in the second case, temporary stopping objects might create
false detections.

Optical flow has been used in several papers for tracking
objects of multiple classes. Luo and Bhandarkar [21] used
optical and elastic matching to match object regions with the
help of a Kalman filter to predict object positions. Aslani
and Mahdavi-Nasab [22] relied only on optical flow for both
object detection and tracking. Shin et al. [23] extract the
objects based on optical flow, and then for every objects,
feature points are extracted and matched. They include in
their method an occlusion handling mechanism that predicts
hidden feature points based on their position with respect
to the centre of the object. However, they do not consider
object fragmentation. Beymer et al. [14] used a corner detector
and a Kalman filter to track objects that have been detected
based on motion on entry/exit areas. Coifman et al. [13] used
the Kanade-Lucas-Tomasi (KLT) tracker [24] to find good
feature points and to track them. The feature tracks are then
grouped based on common motion constraints by computing
the difference between the minimal and the maximal distance
between two tracks. Saunier et al. [9] adapted the work of
Coifman et al. [13] to track all types of road users in outdoor
urban intersections by detecting continuously new features and
adding them to current feature groups. The challenge is to
find the right parameters to segment objects moving at similar
velocities, while at the same time not over-segmenting smaller
non-rigid objects such as pedestrians. Recently, Wang et al.
[16] perform real-time tracking and counting applying the

KLT tracker only on the foreground. While these methods
give reasonable results, they cannot segment nearby objects
that move at the same speed. Furthermore, the quality of
the localization of the target depends on the positions of the
detected KLT feature points. If all the points are located for
example at the top part of the target, its position will be biased
toward the top part of the video frame, which will increase the
positional error if projecting the coordinates to a ground plane
because of perspective.

Background subtraction is also the basis of several multiple
object class trackers. Stauffer and Grimson [25] proposed a
tracking method that first extracts objects using the Gaussian
Mixture Model background subtraction algorithm, and then a
multiple hypothesis tracking method and a Kalman filter are
used to find correspondences between blobs using position
and size. Fuentes and Velastin [26] proposed a system that
performs simple data association via the overlap of foreground
blobs between two frames. In addition to matching blobs
based on overlap, Torabi et al. [17] validate the matches by
comparing the histograms of the blobs and by validating the
data association over short time windows using a graph-based
approach. Batista et al. [27] match objects from frame to
frame using the auto-correlation of 8×8 pixel blocks obtained
from foreground blobs. The small blocks allow handling
partial occlusions. Song and Nevatia [28] match blobs using
inferred 3D models and a Kalman filter. Jun et al. [19] used
background subtraction to estimate the vehicle size. They
used a watershed segmentation technique to over-segment the
vehicle. The over-segmented patches are then merged using
the common motion information of tracked feature points.
This allows to segment vehicles correctly even in the presence
of partial occlusion. Kim et al. [20] combines background
subtraction and feature tracking approach with a multi-level
clustering algorithm based on the Expectation-Maximization
(EM) algorithm to handle the various object sizes in the scene.
The resulting algorithm tracks various road users such as
pedestrians, vehicles and cyclists online and the results can
then be manually corrected in a graphical interface. Finally,
Mendes et al. [15] also combine background subtraction and
optical flow to deal with objects of varying size: the approach
is evaluated in part on data made available for the first version
of this work [10].

The major issue with the background subtraction approach
is fragmentation that can be quite frequent even in the most
recent background subtraction methods [5]. We propose to
alleviate this problem by combining foreground blobs and
keypoint tracking. The feature points allow greater robust-
ness to occlusions while the foreground blobs allow more
precise localization, as the foreground blob regions are used
as referentials to represent the positions of the points. During
occlusion, the position of the points in the foreground blob ref-
erential can be used to estimate the exact position of the centre
of the target. Fragmentation is handled using information like
common motion and proximity, similarly to the method used
in [17].

In contrast to the work in [20] that uses EM to cluster
feature trajectories in objects, our method relies on background
subtraction for the same task. Features inside a common region
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are grouped instead of features with common motion. This
allows us to discriminate between vehicles having common
trajectory and speed, and to obtain better localization. More-
over, this feature grouping procedure allows us to achieve bet-
ter tracking results on non-rigid object than previous feature-
based methods relying on common motion criteria like [9].
Similarly to [29], a FSM and inter-frame blob associations
are used to handle the occlusion and segmentation problems
of the background subtraction, and we add a hypothesis state
to avoid false object detections.

III. METHOD

A. Motivation and overview

In the context of a high probability of object fragmentation
and merging, the proposed method is based both on blob and
point tracking. Blobs allow us to better locate the position of
objects, to track objects with only few keypoints and to track a
priori unknown objects. Points allow us to better discriminate
between objects and to handle occlusion, splitting, merging
and fragmentation more robustly. The overview of our tracking
method is presented in Algo. 1. At first, foreground blobs are
extracted using the ViBe background subtraction method [6]
(line 3). These foreground blobs are then modelled using their
size and position, as well as FREAK keypoints [30] (line 4).
After that, “low-level” tracking is performed to match blobs
across two consecutive frames (line 5). These blob matches
correspond to what are called short tracklets (s-tracklets). To
handle merging, splitting and fragmentation, s-tracklets are
analyzed and then assigned to object tracks (line 6), after
which track properties are updated (line 7 to 14). This part
is called high-level tracking and is based on the notion of
track and track state. A track corresponds to the trajectory
of a physical object in the real world. One or many blobs at
each frame may represent a physical object. The track state
is used for s-tracklet assignment and represents the track life
cycle in the scene (entering, exiting, visible, etc.). The FSM is
essential to determine when and how an s-tracket can be added
to another track. This step uses the s-tracklet information to
resolve the ambiguity between the assignments of s-tracklets
to tracks. At the end of the algorithm (line 16), the final tracks
are outputted. They may differ from the ones computed at each
frame because they are adjusted when merging and splitting
are discovered.

B. Foreground blob extraction

Foreground blobs are extracted using the ViBe background
subtraction method [6]. This method was selected because it
is fast and it is among the top performers on the original
changedetection.net benchmark [5]. To decrease noise, we
apply a Gaussian blur with a 5x5 kernel before the background
subtraction and smaller holes in the foreground are filled with
morphological operations after the background subtraction.
Furthermore, we have slightly modified the ViBe method to
better handle intermittent object motion that occurs often in
urban scene since vehicles will park on the side of the street or
stop at red lights (see [10] for the details). Foreground objects
that are not moving are removed.

Algorithm 1 Overview of Urban Tracker
1: procedure URBAN TRACKER
2: for each frame do
3: Extract foreground blobs (section III-B)
4: Compute model for each blob (section III-C)
5: Match blobs with those from previous frame (s-tracklets construc-

tion) (section III-D)
6: Assign s-tracklets to object tracks
7: for each s-tracklet do
8: if s-tracklet is assigned to object track then
9: Update track model

10: Update track state
11: else
12: Create new track in hypothesis state
13: end if
14: end for
15: end for
16: Return final object tracks
17: end procedure

As usual, once the foreground pixels are detected, connected
components are computed [18], [31] to generate the blobs and
small blobs are filtered out.

C. Blob and track model

The blob model is composed of the blob size, the blob
position and a collection of keypoints located inside it. The
keypoints are used for data association, and the size and
position of the blobs are used for computing the object tracks.
The keypoints are extracted using BRISK [32] with 3 octaves
for some scale invariance and a detection threshold of 10 to
obtain a relatively large number of points. The keypoints are
then described using FREAK [30] for speed, rotation and scale
invariance, and good distinctiveness. We use 3 octaves and a
scaling pattern of 22 pixels. Scale invariance is particularly
useful for long occlusions where the size of the object before
and after is quite different as it happens often in perspective
projections.

A track is modelled as a concatenation of blob models at
successive instants (frames). If keypoints inside a track are
not matched with keypoints from recent blob models, they are
deemed not useful and deleted.

D. Building s-tracklets

Associating blobs into s-tracklets can be considered as low-
level tracking since it deals with the temporal association
between blobs in two consecutive frames. That is, at this
point, we are not concerned with relating the new blobs with
previous tracks. We are just building short tracklets between
two consecutive frames that will be later connected to the
currently tracked objects. In this work, we define a short
tracklet (or s-tracklet) as a track segment between two blobs
in consecutive frames that are matched based on appearance
or overlap. The blob at frame t − 1 is the source blob of
the s-tracklet and the blob at frame t is the destination blob.
We are interested in the following blob tracking events: blobs
entering the scene, blobs exiting the scene, a blob associated to
a single previous blob, blobs disappearing, blobs merging and
blobs splitting. These events are represented inside a FSM.

The first step is to construct the s-tracklets by calculating
the correspondence between the descriptors of the keypoints
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located inside the set of blobs Bt−1 in the previous frame and
the set of blobs Bt in the current frame using the Hamming
distance. The ratio and the symmetry tests defined in [33] are
run for each pair of keypoints to filter bad matches. The ratio
test consists in computing the distance ratio between the best
match and the second best match in order to filter out less
distinctive keypoint matches. The symmetry test consists in
verifying if the matching is mutual for the two keypoints in
the pair. To avoid bad matches, s-tracklets with fewer than
four matched keypoints in their blobs are removed.

In some cases, blobs will not have enough keypoints
matches to build the s-tracklets. This can happen for small
objects with sudden appearance changes like pedestrians, or
on the border of the image where FREAK cannot be applied
because of its spatial extent. In these cases, s-tracklets are built
based on blob overlap. The area of overlap between blobs is
calculated at the pixel level (not with bounding boxes). If a
blob overlaps with more than one blob, the association is done
with the blob that has the largest area of overlap.

A blob at time t that is not matched to any blob in the
previous frame is considered as a potential new track and is
labelled as an unassociated blob.

E. Track construction

Track construction consists in associating the s-tracklets
with the current object tracks. Therefore, this part requires to
interpret the relationships between the s-tracklets and tracks
in order to link them. For example, two s-tracklets with the
same source blob but having different destination blobs in the
next frame represent a case of blob splitting. In some of these
cases, the current tracks have to be modified based on the
new s-tracklet information (e.g. when a split is discovered).
Also, some s-tracklets are the result of fragmentation and have
to be removed. The tracks are updated based on s-tracklet
information using the FSM presented in Fig. 1. The FSM is
applied to a track. Transitions to change the state of a track
are triggered by the s-tracklets interpretation.

An s-tracklet may be linked to a track if the model of its
destination blob is similar to the model of blobs stored in the
track. S-tracklet keypoints descriptors are added to the model
when they are linked together.

1) Track states:
A track stays in the normal state as long as an s-tracklet with
unique (not shared) source and destination blobs can be added
to it at each frame (transition a6), i.e. when an object is tracked
without ambiguity. While in the normal state, a track can move
to the lost state (transition a5) if it cannot be linked to an s-
tracklet in a given frame. It will go back to the normal state
the next time it can be linked to an s-tracklet (transition a11).
However, if the track remains in the lost state for more than a
given number of frames, this track is saved and deleted from
active tracks (transition a12).

When an unassociated blob Bu
t is detected in a frame, two

actions are possible:
1) If Bu

t can be linked to a track in the lost state, this
track moves back to normal state as stated previously
(transition a11);

Normal Group

ExitingLost

Deleted

Hypothesisa0

a1

a2

a3

a7
a5

a6

a4

a8

a9

a10
a11

a12

Fig. 1. Tracking FSM

2) if Bu
t cannot be linked to any active tracks, a new track

is created in the hypothesis state (transition a0). If no
s-tracklet can be added to this track for more than 3
frames, it will be deleted without being saved (transition
a2). This allows us to remove noisy and unstable tracks.
If s-tracklets can be added to this new track for 3
consecutive frames, the state of the track will be changed
to normal (transition a1). Note that tracks in hypothesis
state are merged to spatially close tracks to reduce object
fragmentation (see section III-E4).

Note that each time an s-tracklet is added to a track, the model
of the destination blob of the s-tracklet is saved in the track
to have a history of the position and appearance of the object
during the complete track.

When s-tracklets share source or destination blobs, we are in
the case of merging, splitting, or fragmentation. More analyses
are required to link them to tracks. These situations may occur
when

1) S-tracklets share a destination blob. This corresponds to
merging. In that case, all the tracks that can be linked
to the source blobs of these s-tracklets enter the group
state (transition a3);

2) S-tracklets share a source blob. This corresponds to
splitting. In most cases, this happens to tracks already
in the group state and the question is to identify which
tracks have split from the group. Some tracks will stay in
the group state (transition a8), while others will go back
to the normal state (transition a4) (see section III-E2). If
the split occurs for a track that was not in group state, it
may either be a case of fragmentation or a case of under-
segmentation (two objects entering the scene together
for instance). In that case, a new track will have to be
created in the normal state (see section III-E3).

There is also a state for tracks that end when objects
exit the scene. This is necessary to handle objects that may
overlap as one leaves and the other enters simultaneously. If
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a track in normal state reaches the border of the scene, it is
changed to the exiting state (transition a7). If it cannot be
linked to an s-tracklet in the next frame, it will go in the
deleted state (transition a9). If the track changes direction
and is no longer on the border, we verify that the model is
still the same (three keypoint matches are required for the
model to be considered the same). This is caused again by
the lack of FREAK keypoints around the border: s-tracklets
are constructed solely based on overlap, without appearance
information. At the moment that appearance information starts
to be available again for building s-tracklets, we must therefore
check if we are still tracking the same object, or if the object
exited and we are now tracking a new one. If it is the same
object, the track state changes back to normal (transition a10).
If it is a different object, the track is deleted from active tracks
and a new track is created. This is detailed in section III-E5.

In the following, we explain how the more complex state
transitions are handled.

2) Splitting of tracks in group state:
If a track in group state is detected as splitting from the

group, it will go back to normal state (transition a3). During
the time a track is in group state, its position and its bounding
box can be interpolated by using the FREAK keypoints even
if it is occluded. The FREAK keypoints are matched between
the destination blob of the group s-tracklet and the FREAK
keypoints that have been added to the track in the past. This
process is illustrated on Fig. 2.

Fig. 2a) represents a previous observation in a track with
keypoints and known bounding box. In Fig. 2b) a group blob
with the same keypoints is shown. For all of the keypoints in
a), we calculate their position relative to the centroid of the
bounding box. These relative positions are added to the current
positions of the matched keypoints in b) in order to get several
estimates of the centroid position. In order to reduce noise, we
select the median value on the x and y axis to get the final
estimation of the box centroid. The dimension of the bounding
box is also the median size of previous observations (before
the object became part of the group of objects in the group
blob). The final bounding box of each object can be seen on
Fig. 2c).

3) Splitting of a track in normal state:
A track in normal state may split if it contained multiple

objects that we could not detect individually when this track
was first constructed. This may happen because multiple
objects were occluding each other as they entered the scene.
In this case, new tracks will be created in normal state and
the model of each destination blob of the s-tracklets is used to
retrieve a more exact track of the objects before the split. The
same interpolation process described in the previous section
is used in reverse to interpolate the object positions to obtain
the tracks. Because of such track modifications using new
evidence, the final object tracks may be different from the
tracks obtained at each frame.

4) Fragmentation handling:
S-tracklets may share a source blob for reasons other than

actual track splitting because of the following fragmentation
scenarios: 1) errors in the background subtraction (Fig. 3a),

(a) (b) (c)

Fig. 3. Fragmentation examples. a) A pedestrian is split in three parts, b) as
a pedestrian walks into the scene, his body is split in three parts because his
torso is not visible, so the arm, leg and head seem disconnected, and c) an
object is split in half because of the pole in the foreground

2) concave objects entering the scene (Fig. 3b), or 3) static
objects occluding part of the scene (Fig. 3c).

To resolve cases 1) and 2), we use the hypothesis state as a
temporary buffer before creating permanent tracks (transition
a1). This gives time to the background subtraction to stabilize
and since tracks in the hypothesis state are automatically
merged with spatially close tracks, the track of a single object
is less likely to be split into several parts. Situation 3) is solved
using spatial information and by analyzing the s-tracklets.
Before splitting a track, we verify that the s-tracklets causing
the split diverge enough spatially by dilating their destination
blobs’ bounding boxes by a factor (10 % in our case). If there
is an overlap between the destination blobs of the s-tracklets,
the split is delayed since the splitting tracklets are still too
close to conclude that they correspond to two separate objects.
The use of the bounding boxes and of a dilation factor makes
this test more robust, which is crucial in urban scenes where
there is considerable variation in object size.

5) Exiting objects:
Exiting objects are problematic because their blob may merge

with entering objects (as seen in Fig. 4). The absence of
FREAK keypoints near the border of the image complicates
this issue further because the s-tracklets are more error prone
in this case. Since this situation is quite common in urban
scenes, an exiting state is introduced. As soon as a track
reaches the border of the image, its state changes to exiting.
From that point on, three situations may occur: 1) the object
leaves the scene, 2) the object does not leave the scene and
starts going back toward the middle of the scene, 3) the object
leaves the scene and its blob is merged with an entering object.
Case 1 requires no particular processing. The critical issue is to
distinguish case 2 from case 3. If the object leaves the border
and goes toward the middle, it will still be possible to match it
using FREAK keypoints. Tracks in this situation need to have
at least three matching keypoints to validate that they are still
associated to the same physical object (case 2), or else case 3
is assumed and a new track is created. In case 3, the history
of the new track is recovered from the previous track model
(the one that exited the scene). In order to estimate the frame
at which the group blob started to represent more the new
object and less the exiting one, the group blob in the exiting
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(a) (b) (c)

Fig. 2. Blob estimation process: a) Past bounding boxes with points b) Group blob with current points c) Estimated bounding boxes

(a) (b) (c)

Fig. 4. Identity change problem when an object exits and another enters at
the same time. These are cropped image of the right side of a scene: a) the
dark SUV leaves the scene; b) the green car is part of the same group blob
as the dark SUV; c) the green car takes erroneously the identity of the dark
SUV

state is analyzed: the frame that marks the entry point is the
one when the object blob was the smallest since it indicates
the instant when the blob size started to be modified by the
entering object. This allows us to separate the entering object
from the exiting object.

IV. EXPERIMENTAL VALIDATION

To validate our proposed tracker (called Urban Tracker),
it is compared to an open source reference tracker used
in transportation applications called Traffic Intelligence. It
is based on the KLT tracker to obtain point tracks and on
common motion constraints to group point tracks into object
tracks [9]1. Using five video sequences of road intersections
in cities, the tracking performance of Urban Tracker (UT)
and Traffic Intelligence (TI) are compared globally and for
different road users. The parameter sensitivity of both trackers
is also investigated using cross-validation.

A. Evaluation Methodology

Five videos of urban road intersections were used for the
validation of the algorithm2. Each video was captured at
a different intersection with a different viewpoint. For all
the videos, each object was annotated as soon as it started
moving until it left the scene. An object leaving the scene
and reentering later is considered as a different object. All
objects were annotated (id, centre position, and bounding box
corners) even if they were only partially visible. Also, a mask

1Available at https://bitbucket.org/Nicolas/trafficintelligence (revision
43ae3a1 August 7th, 2015)

2The evaluation videos with ground truth and the tracker source code are
available at http://www.jpjodoin.com/urbantracker/

is applied on the Sherbrooke, Roundabout and Rene-Levesque
(Rene-L. in the tables) video to specify a region of interest
where tracking is performed. A frame is shown for each video
sequence in Fig. 5 and the specifications of each annotated
sequence are listed in Table I. The pedestrians in the Rene-
Levesque video were not annotated because they are too small.

TABLE I
SPECIFICATIONS OF THE ANNOTATED VIDEOS: #FRAMES IS THE LENGTH

OF EACH VIDEO IN FRAMES, #CAR, #CYC. AND #PED. ARE RESPECTIVELY
THE NUMBER OF MOTORIZED VEHICLES, CYCLISTS AND PEDESTRIANS IN

THE ANNOTATED VIDEO, AND #SIMUL. IS THE MAXIMUM NUMBER OF
SIMULTANEOUS OBJECTS IN THE SCENE

Video Resolution #frames FPS #Cars #Cyc. #Ped. #Simul.
Sherbrooke 800x600 1001 30 15 0 5 7
Rouen 1024x576 600 25 4 1 11 8
St-Marc 1280x720 1000 29 7 2 19 14
Rene-L. 1280x720 1000 29 29 2 0 20
Roundabout 800x600 4000 15 54 0 0 4

The CLEAR MOT metrics are used to evaluate the quality
of the tracking by comparing the tracker output with the
manually created ground truth [34]. It consists of the multiple
object tracking accuracy (MOTA) and the multiple object
tracking precision (MOTP). MOTA is the overall ratio of
the number of correct detections of each object over the
number of frames in which each object appears (in the ground
truth): it is defined as 1 −

∑
t(mt + fpt + mmet)/

∑
t gt,

where mt, fpt, mmet and gt are respectively the number
of misses, over detections (false positives), mismatches and
ground truth objects for frame t. MOTP measures the average
precision (distance) of the instantaneous matches: it is defined
as

∑
i,t d

i
t/

∑
t ct, where dit is the distance between the pair

i of associated ground truth and tracker object at frame t and
ct the number of associated pairs in frame t. In addition, the
MT (mostly tracked) and ML (mostly lost) metrics are used
to report also the performance in terms of road users, with the
same criteria as in [35]. MT and ML are the proportions of
ground truth objects that are detected respectively for at least
80 % and for less than 20 % of their existence.

These metrics depend on matching the tracker output to the
ground truth, which can be done in various ways depending on
the type of tracker output. For a tracker yielding a bounding
box such as UT, the distance can be the overlap of the bound-
ing boxes of the tracker object and ground truth, while for a
tracker yielding a centroid position such as TI, the distance
is simply the Euclidean distance between the centroid of the
tracker object and the center of the ground truth bounding
box. The second definition is used in this study since TI is not
designed to generate object bounding boxes. In addition, the
maximum distance for a tracker object to match a ground truth
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(a) Sherbrooke (b) Rouen (c) St-Marc (d) Rene-L. (e) Roundabout

Fig. 5. Sample frame from each video

(a) Sherbrooke: 90 px (b) Rouen: 164 px (c) St-Marc: 113 px

(d) Rene-L.: 24 px (e) Roundabout: 80 px

Fig. 6. Association thresholds on the reference objects used for each video

object, called the association threshold, must be defined. It was
chosen for each video as the half-diagonal of the bounding box
of a typical element in the middle of the frame. The reference
objects used and the association thresholds are shown in Fig. 6.
The influence of the association threshold on the results is
discussed in section IV-D.

For each test video, the parameters were optimized for UT
and the authors of TI provided us with appropriate parameters
for their algorithm. For UT, the parameters are the number
of frames to look for a lost object (Nr), the fragmentation
factor (Db) and the minimum blob size (Tm). For TI, the
parameters that were adjusted were the connection distance
(dcon), the segmentation distance (dseg) and the minimum
distance between features (mdf ). A homography was used
when available for TI. The parameters used for each video
are presented in Table II.

B. Experimental Results

The results are presented for each video as a whole and
for each road user type separately in Table III. From this
table, we can observe that UT’s MOTA is higher than TI
on each tested video and for each road user type (a MOTA
around 0.8 and above has been associated empirically to god
enoug performance for transportation applications [36]). This
means that UT generates fewer id changes, false positives and
false negatives overall. Looking at the variation of MOTA
per road user type, it can be observed that it varies less for
UT than TI. This can be explained by the use of background
subtraction that allows UT to detect objects of various types
and sizes without rigid motion constraints. The observed
variation is caused by complex interactions between objects

and the resulting occlusions, but not by the object type or size.
For the Sherbrooke video, the difference between the MOTA
for the cars and the pedestrians is caused by two pedestrians
moving as a group for the whole scene, which does not permit
the algorithm to segment them correctly. If both pedestrians are
considered as a single group object in ground truth annotation,
the MOTA for pedestrians increase from 0.705 to 0.895, which
is comparable to the score for cars in this video. For the Rouen
and St-Marc videos, the interactions between pedestrians are
more complex than between cars, which leads to some id
changes and misses. Based on the MOTP, UT is more precise
in most cases. The cases of lower performance for UT can be
attributed to deformations of the background subtraction due
to shadows. This is especially true for Roundabout where the
shadows are very large and some large objects near the camera
are poorly segmented.

TABLE III
CLEAR MOT METRICS FOR THE VIDEOS: LARGER MOTA VALUES AND

SMALLER MOTP VALUES REFLECT BETTER PERFORMANCE. ALL RESULTS
ARE SHOWN SEPARATELY BY ROAD USER TYPE AND ALTOGETHER.
BOLDFACE INDICATES THE BEST RESULTS BETWEEN UT AND TI

UT TI [9]
Video Type MOTA MOTP MOTA MOTP

Sherbrooke
Cars 0.887 10.59 px 0.825 7.42 px
Ped. 0.705 6.61 px 0.014 11.98 px
All 0.787 8.64 px 0.384 7.54 px

Rouen

Cars 0.896 9.73 px 0.185 66.69 px
Ped. 0.830 13.77 px 0.647 20.04 px
Cyc. 0.927 14.13 px 0.869 13.11 px
All 0.844 13.19 px 0.588 24.20 px

St-Marc

Cars 0.889 10.90 px -0.178 38.99 px
Ped. 0.730 5.05 px 0.693 10.44 px
Cyc. 0.989 6.39 px 0.895 7.46 px
All 0.764 5.99 px 0.602 14.58 px

Rene-L.
Cars 0.796 3.04 px 0.547 5.23 px
Cyc. 0.232 2.20 px 0.232 3.14 px
All 0.723 2.98 px 0.503 5.10 px

Roundabout All (Cars) 0.718 12.99 px 0.605 8.57 px

The MOTA of TI reveals that there is a road user type with a
much lower score than the others for each video. The algorithm
has difficulty handling objects of various sizes using one set
of parameters: in order to maximize its MOTA, the parameters
should be set for the most common object in the scene. For
Sherbrooke, the parameters were tuned for cars because it
is the type with the highest number of observations. As a
result, almost no pedestrians were tracked. For Rouen and St-
Marc, the parameters were tuned for pedestrians to maximize
the score. Pedestrians and cyclists have similar sizes in those
videos: MOTA is therefore better for them than for cars. In this
case, cars are over-segmented and their detections as measured
by MOTP have very low precision.
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TABLE II
PARAMETERS USED FOR UT AND TI FOR EACH VIDEO (HOM. INDICATES THE USE OF A HOMOGRAPHY)

UT TI [9]
Video Parameters Hom. Parameters Hom.
Sherbrooke Nr = 1160, Db = 0.1, Tm = 300 no dcon = 4 m, dseg = 1.7 m, mdf=5 yes
Rouen Nr = 150, Db = 0.7, Tm = 380 no dcon = 25 px, dseg = 25 px, mdf=5 no
St-Marc Nr = 1160, Db = 0.1, Tm = 300 no dcon = 10 px, dseg = 40 px, mdf=5 no
Rene-L. Nr = 900, Db = 0.2, Tm = 50 no dcon = 10 px, dseg = 40 px, mdf=2 no
Roundabout Nr = 200, Db = 0.2, Tm = 300 no dcon = 3.75 m, dseg = 1.5 m, mdf=5 yes

Returning to our method, UT, the MOTA for cyclists is
very high for Rouen and St-Marc, and much lower for Rene-
Levesque. In the first two videos, there are few interactions
between cyclists and other road users. In the Rene-Levesque
video, one of the two cyclists is far from the camera which
makes it very small. It is too small to be detected by the
background subtraction and it is filtered as noise. Since this
cyclist stays for a very long time in the video, this causes a
large number of false negatives. This explains the very low
MOTA for cyclists in this scene. The MOTA of TI for cyclists
is similarly small for the same reason in that scene. In the
case of TI, the object is too small for the KLT tracker to find
enough points.

From the Table IV, it can be seen that UT has overall higher
MT and lower ML for all videos which is consistent with the
comparison based on the CLEAR MOT metrics.

TABLE IV
MOSTLY TRACK (MT) AND MOSTLY LOST (ML) METRICS FOR THE
VIDEOS: LARGER MT VALUES AND SMALLER ML VALUES REFLECT
BETTER PERFORMANCE. BOLDFACE INDICATES THE BEST RESULTS

BETWEEN UT AND TI

UT TI [9]
Video MT ML MT ML
Sherbrooke 0.850 0.050 0.600 0.250
Rouen 0.750 0.000 0.375 0.375
St-Marc 0.643 0.071 0.607 0.179
Rene-L. 0.759 0.138 0.414 0.207
Roundabout 0.509 0.000 0.636 0.200

C. Parameters sensitivity

In order to evaluate the sensitivity of each algorithm to
their parameters, and to avoid bias caused by our choice of
parameters, a five-fold cross-validation has been applied where
one fold is used for training and four folds are used for testing.
To do that, the parameters found for each video sequence are
used (see Table II) to evaluate each tracker on the four other
test video sequences. The cross-validation results were then
calculated by averaging MOTA and MOTP: UT has better
MOTA (0.716 against 0.187) and MOTP (9.27 px against
17.19 px) than TI. The intermediate results obtained for each
fold and used for calculating the final cross-validation results
are presented in Table V.

The cross-validation results obtained by UT are close to
the results obtained in Table III, which demonstrates that UT
generalizes well and that it is not too sensitive to the choice
of the parameters. On the other hand, the average MOTA for
TI is low and far from the results obtained using parameters
adjusted to each video sequence individually. Although it

is has been shown that TI is less sensitive to parameters
when using homographies [9], TI needs different grouping
and segmentation parameters to handle correctly objects of
different sizes: without classification and different sets of
parameters for different road users, its accuracy is therefore
significantly affected in scenes with objects of different sizes,
leading to over-grouping and under-grouping of objects. These
grouping problems will create a high number of false positives
which affects negatively the MOTA and the precision of the
position of the centroid.

D. CLEAR MOT association threshold

The choice of the association threshold of CLEAR MOT
may have a large impact on the performance measures MOTA
and MOTP and may bias the reported results: if too low, valid
object tracks will be considered as false positives; if too high,
false alarms may be associated to missed objects. In order to
show that the choice of association threshold did not alter the
comparison between UT and TI, the MOTA and MOTP were
plotted as a function of the association threshold in Fig. 7 for
the Sherbooke and Rene-Levesque videos (the plots for the
others are similar). It shows that UT is superior to TI over the
whole range of association threshold, except for the MOTA of
Sherbrooke, where TI outperforms UT for small association
thresholds. UT’s MOTA is slightly lower in the Sherbrooke
video when the association threshold is under 9 px, which is
its average precision (see its MOTP “plateau”). We can also
observe that the MOTA and MOTP curves get to a plateau
much faster for UT. This is because UT generates very few
false positives and the overall precision is higher.

E. Application to Traffic Data Collection

Finally, an example of the application of UT to traffic data
collection is shown in Fig. 8. Four screen-lines are drawn and
all objects crossing at least two lines are counted, with the first
considered as the origin and the last as the destination in the
intersection (U-turns are not counted). Average instantaneous
speeds are also represented spatially in the intersection after
filtering out unrealistic speeds above 70 km/h.

V. CONCLUSION

We have presented Urban Tracker (UT), a new tracking
algorithm based on modern binary descriptor and background
subtraction technique. Along with a FSM, the use of both
methods allows to track road users of various types and
sizes. It also includes a bounding box estimation method
that handles partial occlusion. Experimental results show that
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TABLE V
RESULTS OF 5-FOLD CROSS-VALIDATION. THE NUMBER ON THE LEFT OF THE ARROW IS THE RESULT AND THE NUMBER ON THE RIGHT REPRESENTS
THE DIFFERENCE BETWEEN THE MOTA AND THE MOTP FOR THE OPTIMIZED AND THE SCENE SPECIFIC PARAMETERS. THE MOTA DIFFERENCE IS A

RELATIVE DIFFERENCE IN PERCENTAGE POINTS. FOR THE MOTA COLUMN, A ⇓ IS A LOWER TRACKING ACCURACY WHILE FOR THE MOTP COLUMN, A
⇑ IS A LOWER TRACKING PRECISION. RESULTS WERE NOT REPORTED FOR TI WITH SHERBROOKE AND ROUNDABOUT PARAMETERS SINCE THEY TAKE

INTO ACCOUNT A HOMOGRAPHY AND CANNOT BE APPLIED TO THE OTHER VIDEOS

Fold 1: Sherbrooke parameters
UT TI [9]

Video MOTA MOTP MOTA MOTP
Rouen 0.770 ⇓ 7.38% 14.01 px ⇑ 0.82 px NA NA

St-Marc 0.764 ≈ 0.00% 5.99 px ≈ 0.00 px NA NA
Rene-L. 0.717 ⇓ 0.58% 2.80 px ⇓ 0.17 px NA NA

Roundabout 0.507 ⇓ 21.14% 14.07 px ⇑ 1.07 px NA NA
Fold 2: Rouen parameters

UT TI [9]
Video MOTA MOTP MOTA MOTP

Sherbrooke 0.787 ≈ 0.00% 8.68 px ⇑ 0.04 px 0.379 ⇓ 0.47% 13.80 px ⇑ 6.26 px
St-Marc 0.701 ⇓ 6.28% 7.03 px ⇑ 1.04 px 0.422 ⇓ 18.0% 20.93 px ⇑ 6.34 px
Rene-L. 0.669 ⇓ 5.37% 3.05 px ⇑ 0.07 px 0.305 ⇓ 19.7% 5.77 px ⇑ 0.67 px

Roundabout 0.664 ⇓ 5.40% 13.62 px ⇑ 0.62 px 0.561 ⇓ 4.32% 10.44px ⇑ 1.88px
Fold 3: St-Marc parameters

UT TI [9]
Video MOTA MOTP MOTA MOTP

Sherbrooke 0.787 ≈ 0.00% 8.64 px ≈ 0.00 px -0.860 ⇓ 124.41% 19.90 px ⇑ 12.37 px
Rouen 0.770 ⇓ 7.38% 14.01 px ⇑ 0.82 px 0.443 ⇓ 14.58% 30.64 px ⇑ 6.44 px

Rene-L. 0.717 ⇓ 0.58% 2.80 px ⇓ 0.17 px 0.206 ⇓ 29.73% 5.95 px ⇑ 0.84 px
Roundabout 0.507 ⇓ 21.14% 14.07 px ⇑ 1.07 px -0.003 ⇓ 60.79% 17.16 px ⇑ 8.59 px

Fold 4: Rene-L. parameters
UT TI [9]

Video MOTA MOTP MOTA MOTP
Sherbrooke 0.750 ⇓ 3.66% 8.90 px ⇑ 0.26 px -0.503 ⇓ 88.70% 17.29 px ⇑ 9.75 px

Rouen 0.765 ⇓ 7.92% 15.84 px ⇑ 2.64 px 0.517 ⇓ 7.12% 34.17 px ⇑ 9.97 px
St-Marc 0.679 ⇓ 8.55% 7.73 px ⇑ 1.74 px 0.335 ⇓ 26.66% 16.78 px ⇑ 2.19 px

Roundabout 0.633 ⇓ 8.56% 12.26 px ⇓ 0.74 px 0.167 ⇓ 43.73% 13.40 px ⇑ 4.83 px
Fold 5: Roundabout parameters

UT TI [9]
Video MOTA MOTP MOTA MOTP

Sherbrooke 0.791 ⇑ 0.43% 8.65 px ⇑ 0.02 px NA NA
Rouen 0.729 ⇓ 11.57% 14.02 px ⇑ 0.83 px NA NA

St-Marc 0.742 ⇓ 2.24% 6.25 px ⇑ 0.26 px NA NA
Rene-L. 0.619 ⇓ 10.34% 2.89 px ⇓ 0.09 px NA NA

UT performs better than a current state-of-the-art road user
tracker on five real urban traffic scenes that contain several
types of road users. The main contribution is a new tracker
designed specifically for urban tracking that requires no prior
knowledge (camera calibration) while needing few intuitive
parameter adjustments. Indeed, cross-validation results show
that the new tracker generalizes very well to different scenes
with the same parameters. Results show balanced performance
for the tracking of pedestrians, cyclists and motorized vehicles.
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