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ABSTRACT 1 

Video-based collection of traffic data is on the rise. Camera calibration is a necessary step in all 2 

applications to recover the real-world positions of the road users of interest that appear in the 3 

video. Camera calibration can be performed based on feature correspondences between the real-4 

world space and image space as well as appearances of parallel lines in the image space. In urban 5 

traffic scenes, the field of view may be too limited to allow reliable calibration based on parallel 6 

lines. Calibration can be complicated in the case of incomplete and noisy data. It is common that 7 

cameras monitoring traffic scenes are installed before calibration was undertaken. In this case, 8 

laboratory calibration, which is taken for granted in many current approaches, is impossible. This 9 

work addresses various real world challenging cases, for example when only video recordings 10 

are available, with little knowledge on the camera specifications and setting location, when the 11 

orthographic image of the intersection is outdated, or when neither an orthographic image nor a 12 

detailed map is available. A review of the current methods for camera calibration reveals little 13 

attention to these practical challenges that arise when studying urban intersections to support 14 

applications in traffic engineering. This study presents the development details of a robust 15 

camera calibration approach based on integrating a collection of geometric information found in 16 

urban traffic scenes in a consistent optimization framework. The developed approach was tested 17 

on six datasets obtained from urban intersections in British Columbia, California, and Kentucky. 18 

The results clearly demonstrated the robustness of the proposed approach.  19 
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1. BACKGROUND 1 

A research stream that is gaining momentum in traffic engineering strives to adopt vision-based 2 

techniques for traffic data collection. The use of video sensors to collect traffic data, primarily by 3 

tracking road users, has several advantages: 4 

1. Video recording hardware is relatively inexpensive and technically easy to use.  5 

2. A permanent record of the traffic observations is kept.  6 

3. Video cameras are often already installed and actively monitoring traffic intersections. 7 

4. Video sensors offer rich and detailed data.  8 

5. Video sensors cover a wide field of view. In many instances, one camera is sufficient to 9 

monitor an entire intersection.  10 

6. Techniques developed in the realm of computer vision makes automated analysis of 11 

video data feasible. Process automation has the advantage of reducing the labour cost and 12 

time required for data extraction from videos.  13 

In a typical video sensor, observable parts of real-world objects are projected on the surface of an 14 

image sensor, in most cases a plane. An unavoidable reduction in dimensionality accompanies 15 

the projection of geometric elements (points, lines, etc.) that belong to a 3-dimensional Euclidian 16 

space (world space) onto a 2-dimensional image space. Camera calibration is conducted to map 17 

geometric elements, primarily road user positions, from image space to the world space in which 18 

metric measurements are possible. The recovery of real-world tracks of road users supports 19 

several applications in traffic engineering. Examples are the analysis of microscopic road user 20 

behavior, e.g. measuring temporal and special proximity for traffic safety analysis (1; 2), 21 

measurement of road user speed (3; 4; 5), and traffic counts (6). In addition, conducting road 22 

user tracking in real-world coordinates can improve tracking accuracy by correcting for 23 

perspective effect and other distortions due to projection on the image plane. Camera calibration 24 

enables the estimation of camera parameters sufficient to reproject objects from the image space 25 

to a pre-defined surface in the real-world space. A camera can be parameterized by a set of 26 

extrinsic and intrinsic parameters. Extrinsic camera parameters describe camera position and 27 

orientation. Intrinsic camera parameters are necessary to reduce observations to pixel 28 

coordinates. 29 

Three major classes of camera calibration methods can be identified. First are traditional 30 

methods based on geometric constraints either found in a scene or synthesized in the form of a 31 

calibration patterns. The second class contains self-calibration methods that utilize epipolar 32 

constraints on the appearance of features in different image sequences taken from a fixed camera 33 

location. Camera self-calibration is sensitive to initialization and can become unstable in case of 34 

special motion sequence (7) and in case intrinsic parameters are unknown (8). Active vision 35 

calibration methods constitute the third kind of method. They involve controlled and measurable 36 

camera movements.  37 
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Only the first class of methods lends itself to traffic monitoring in which cameras have 1 

been fixed with little knowledge of their intrinsic parameters and control over their orientation, 2 

as is the case with many already installed traffic cameras. Other approaches include: linear and 3 

non-linear, explicit and implicit (9). Non-linear methods enable a full recovery of intrinsic 4 

parameters, as opposed to linear methods. Both methods may be combined, e.g. in (10), by 5 

obtaining approximate estimates using linear methods with further refinements using non-linear 6 

methods. Inferring camera parameters from implicit transformation matrices obtained using 7 

implicit methods is susceptible to noise (11). Limiting calibration to extrinsic parameters gives 8 

rise to the topics of pose estimation (12).  9 

Despite the numerous studies of the topic of camera calibration, several challenges can arise due 10 

to particularities of urban traffic scenes.  11 

1. Many of the photogrammetry and Computer Vision (CV) techniques available in the 12 

literature do not apply due to difference in context, hardware, and target accuracy. 13 

Powerful and mature tools such as self-calibrating bundle in the existing literature are not 14 

always possible to apply for relatively close-range measurements in urban traffic scenes, 15 

especially for images taken by consumer-grade cameras containing noisy or incomplete 16 

calibration data (13). In addition, other methods in photogrammetry and CV depend on 17 

observing regularization geometry or a calibration pattern. In the typical cases where 18 

video cameras are already installed to monitor a traffic scene, or when only video records 19 

are available, this procedure cannot be applied. 20 

2. Many of existing techniques rely on parallel vehicle tracks, in lieu of painted lines, for 21 

vanishing point estimation (14) (5). Vehicle tracks can be extracted automatically using 22 

computer vision techniques. These methods are particularly useful for self-calibration of 23 

pan-tilt-zoom cameras used for speed monitoring on rural highways. However, the 24 

vehicle motion patterns in urban intersections are not prevalently parallel. An example is 25 

shown in Figure 1.  26 

3. Much of the regularization geometry in traffic scenes comprises elements such as road 27 

markings that may be altered in many ways. In this study, one of the the monitored traffic 28 

sites “BR” was repainted after the orthographic image was taken, making point 29 

localization difficult. Using only point correspondences in this case can be unreliable.  30 

4. A significant number of camera calibration methods rely on the observation of one of 31 

more sets of parallel co-planar lines. By estimating the points of intersection of these sets 32 

of lines, i.e. vanishing points located at the horizon line of the plane that contains these 33 

lines, camera parameters can be estimated. In urban traffic environments, the field of 34 

view of the camera can be too limited to allow the depth of view necessary for the 35 

accurate estimation of the location of the vanishing points. To achieve desirable accuracy, 36 

camera calibration must be based on additional geometric information.  37 
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5. In many cases, cameras monitoring urban traffic intersections are already installed. Many 1 

of these cameras function as traffic surveillance devices, a function that does not 2 

necessarily require accurate estimation of road user positions. Given the installation cost 3 

and intended functionality, in-lab calibration of intrinsic parameters, e.g. using geometric 4 

patterns, can be difficult.  5 

As illustrated in Figure 1, 2 and Table 1, the proposed camera calibration approach was mainly 6 

motivated by issues encountered in case studies. These issues are the repainting of traffic 7 

pavement marking, the field of view is too limited or non-linear distortion is too strong to enable 8 

accurate estimation of vanishing point(s), and the analysis of video sequences collected by other 9 

parties. In addition, the geometric regularities abundant in traffic scenes offer geometric 10 

information besides the appearance of parallel lines that can increase the accuracy of camera 11 

calibration. The majority of the applications supported by this study involved the recovery of 12 

real-world coordinates of pedestrian tracks. Pedestrians move significantly slower than the 13 

motorized traffic, a characteristic that evidently required higher accuracy for camera parameters. 14 

Relying only on geometric information provided by parallel lines yielded camera parameters that 15 

provided unsatisfactory pedestrian speed estimates. 16 

 17 

 18 

TABLE 1 Summary of Case Studies 19 

Case Study 
Code 

Site / City Application Issues Encountered C1 D2 A3 E4 

BR-1 
BR-2 
BR-3 
BR-4 

 
PG 

 
 
 

OK 
 
 
 

K1 
 K2 

Downtown – 
Vancouver  

 
 
 

Downtown – 
Vancouver 

 
 

Chinatown - 
Oakloand 

 
 

Kentucky 

Pedestrian Walking 
Speed (3) 

 
 
 

Automated study of 
Pedestrian-vehicle 

conflicts (2) 
 

Automated before-and-
after study of pedestrian-

vehicle conflicts 
 

Automated analysis of 
vehicle-vehicle conflicts 

Outdated orthographic map 
No convergent lines 

 
 
 

No convergent lines 
 
 
 

Camera unaccessible and not set 
by authors  

 
 

Camera unaccessible and not set 
by authors  

Video quality is low 
Strong non-linear distorsion 

No orthographic image 

13 
11 
5 
9 
 

22 
 
 
 

14 
 
 
 
0 
0 

6 
12 
10 
10 
 
2 
 
 
 
2 
 
 
 
7 
7 
 

4 
6 
5 
3 
 
2 
 
 
 
9 
 
 
 
2 
2 
 

 

0 
0 
0 
0 
 
0 
 
 
 

34 
 
 
 

30 
39 
 
 

1 The number of point correspondences availabel for calibration.  
2 The number of line segments annotated in the image space with known real-world length. 
3 The number of annotated pairs of lines in the image space the angle between which is known in world space. 
4 The number of line segments annotated for equi-distance constraints. The endpoints of each line segment are 
annotated at two locations in the camera field of view.  
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 1 

  

Figure 1 The difficulty of relying on the automated extraction of road user tracks. Figure a) shows the motion patterns 
of vehicles at a busy intersection in China Town, Oakland-California (sequence OK). Reliance on vehicle tracks for 
vanishing point estimation is challenging because vehicle tracks do not exhibit enough parallelism. Many patterns 
representing turning movements and lane changing. Parallel vehicle tracks have to be hand-picked which is tantamount 
to manually annotating lane marking. Figure b) shows pedestrian motion patterns. It is evident that pedestrian tracks do 
not exhibit prevalent parallelism within crosswalks.  

 

  

Figure 2 An illustration of camera calibration issues that arise in urban traffic scenes. Figure a) shows a frame taken 
from video sequence from video sequence BR-1 shot at Vancouver-British Columbia. The estimation of the vanishing 
point location based on lane marking was unreliable. The obtained camera parameters were initially not sufficient to 
measure pedestrian walking speed in adequate accuracy. The integration of additional geometric constraints enhanced 
the estimates of the camera parameters and met the objectives of this application. Figure b) shows a sample frame from 
video sequence K1 of traffic conflicts shot in Kentucky. Significant radial lens distortion is observed at the peripheries of 
the camera field of view. A reliable estimation of the vanishing point location requires the consideration of line segments 
that extend to the peripheries of the camera field of view. The curvature of parallel lines was significant in these 
locations and the estimation of the vanishing point was challenging.  

a b 

a b 
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This study describes a robust camera calibration approach for traffic scenes in case of incomplete 1 

and noisy calibration data. The cameras used in this study were commercial-grade cameras; most 2 

were held temporarily on tripods during the video survey time, others were already installed 3 

traffic cameras. A strong focus of this study is on the positional accuracy of road users, 4 

especially pedestrians. This was possible by relying on manually annotated calibration data, not 5 

vehicle tracks as is the case in automatic camera calibration, e.g. (5).  6 

The uniqueness of this study lies in the composition of the cost function that is minimized 7 

by the calibrated camera parameters. The cost function comprises information on various 8 

corresponding features in world and image spaces. The diversity of geometric conditions 9 

constituted by each feature correspondence enables the accurate estimation of camera 10 

parameters. Features are not restricted to point correspondence or parallel lines, but extend to 11 

distances , angles between lines, and relative appearance of locally rigid objects. After annotating 12 

calibration data, a simultaneous calibration of extrinsic and intrinsic camera parameters is 13 

performed, mainly to reduce error propagation (15).  14 

The following sections describe in order, a brief review of previous work, the 15 

methodology of camera calibration, and a discussion of four case studies. Video sequences in 16 

these case studies were collected from various locations in the Downtown area of Vancouver, 17 

British Columbia, Oakland, California, and an unknown location in Kentucky. 18 

2. PREVIOUS WORK 19 

There is an emerging interest in the calibration of cameras monitoring traffic scenes, e.g. (16) 20 

(17) (18) (19) (5) (15). An important advantage of traffic scenes for this purpose is that they 21 

typically contain geometric elements such as poles, lane marking, and curb lines. The appearance 22 

of these elements is partially controlled by their geometry, therefore providing conditions on the 23 

camera parameters. Common camera calibration approaches draw the calibration conditions 24 

from a set of corresponding points, e.g. (10) (20), geometric invariants such as parallel lines (21), 25 

or from line correspondences (22).  26 

These approaches however overlook other geometric regularities such as road markings, 27 

curb lines, and segments with known length. The use of geometric primitives is becoming more 28 

popular, e.g. in recent work (19) and citations therein. However, two main issues can arise in 29 

calibrating traffic scenes that cannot be addressed using existing techniques. First, most of the 30 

existing techniques construct the calibration error in terms of the discrepancy between observed 31 

and projected vanishing points. However, camera locations may be at significantly high altitude 32 

or its field of view too limited to reliably observe the convergence of parallel lines to a vanishing 33 

point. Finding initial guesses can be also challenging in such settings. Second, a detailed map or 34 

up-to-date orthographic image of the traffic scene may be unavailable. In this case, reliance on 35 

point correspondences is not possible. The proposed calibration approach draws the calibration 36 

information from the real-world lengths of observed line segments, angular constraints, and the 37 

dimension invariance of vehicles traversing the camera field of view.  38 
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3. METHODOLOGY 1 

3.1. Camera Model 2 

In this camera calibration approach, the canonical pinhole camera model is adopted to represent 3 

the perspective projection of real-world points on the image plane. A projective transform that 4 

maps from a point X��� to a point Y��� can be defined by a �� � 1	 
 �� � 1	 full-rank 5 

matrix. In the case of mapping from 3-D Euclidean space to the image plane, � � 2 and � � 3. 6 

In homogeneous coordinates, the projective transform can be represented by a matrix  ���� and a 7 

normalization term � as follows: 8 

� ��1� � � ��1�      … (1) 9 

Similar to the column vectors in Equation 1, T is defined up to a scaling factor while containing 10 

11 degrees of freedom. In theory, a total of 11 camera parameters can be recovered: 6 extrinsic 11 

and 5 intrinsic. However, 2 intrinsic parameters are primarily considered in the proposed 12 

approach. An additional non-linear parameter, radial lens distortion, is calibrated for using as an 13 

initial estimate of the calibrated linear camera parameters. The matrix T can be decomposed into 14 

two matrices such that: � � � 
 �, where matrix ���� maps from world coordinates to camera 15 

coordinates, and matrix ���� maps from camera coordinates to pixel coordinates. Knowledge of 16 

extrinsic camera parameters, comprising 3 rotation angles and a translation vector, is sufficient 17 

for generating �. Matrices � and � are calculated as follows: 18 

� � � �      �0�
� 1�       � �       !" #!$ cot ( )* 00 +,-.� / 0* 00 0 1 01   … (2) 19 

where !$ and !" are respectively referred to as the horizontal and vertical focal length in pixels, ( 20 

is the angle between the horizontal and vertical axes of the image plane, and �)* , 0*	 are the 21 

coordinates of the principal point. The principal point is assumed to be at the centre of the image 22 

in the video sequence. The second-degree form of the radial lens distortion is represented by the 23 

radial lens distortion parameter � as follows: 24 3́ � 3 5 �1 � �67	 & 8́ � 8 5 �1 � �67	       … (3) 25 

where �3, 8	 are image space coordinates measured in pixels,  �3,́ 8́	 are the image space 26 

coordinate corrected for radial lens distortion and 6 is the uncorrected distance in pixels from the 27 

principal point to a point on the image space.  28 

3.2. Cost Function 29 

There is no universally recognized cost function for errors in a camera model (19). There are 30 

stable formulations developed in the literature, e.g. in (23), for calibration data consisting of 31 

point correspondences. It is however more complicated to construct a proper cost function if the 32 



 

Ismail, Sayed, and Saunier 9 

   

 

calibration error is based on different types of geometric primitives. A proper cost function 1 

should satisfy the following conditions:  2 

1. Uniformly represent error terms from different geometric primitives, i.e. consistent weights 3 

and units. This is possible if the cost function is constructed in real-world coordinates.  4 

2. Be perspective invariant, i.e. not sensitive to image resolution or camera-object distance.  5 

It is also desirable that a cost function be meaningful in further image analysis steps so that 6 

keeping account of error propagation is possible. Satisfying condition one in a linear algebra, and 7 

without special mapping, entails some assumption and/or approximation. Following are the set of 8 

conditions proposed in this approach to represent a calibrated camera model: 9 

1. Point correspondences. Matching features are points annotated in the image and world 10 

spaces. This condition matches the reprojection of points from one space to their 11 

positions in a current space. For unit consistency, point positions in world space are 12 

compared to the back-projection of points from the image space to the world space.  13 

2. Distance constraints. This condition compares the distance between the back-projection 14 

of two points to the world space and their true distance measured from an orthographic 15 

map or by field measurements.  16 

3. Angular constraints. This condition compares the true angle between the two annotated 17 

lines to that calculated from their back-projection to world space. Special cases are angles 18 

of 0° in case of parallel lines, e.g. lane markings or vertical objects, and 90° in case of 19 

perpendicular lines, e.g. lane marking and stop lines.  20 

4. Equi-distance constraints. This condition compares the real-world length of a line 21 

segments observed at different camera depths. This condition preserves the back-22 

projected length of a line segment even if it varies in the image due to perspective. 23 

The following cost function is composed of four components, each representing a condition: 24 

!��	 � ∑ :∆<=:77 � >∆?@A7 � >B C tan ∆FGA7=�H,@�I,G�J,K�L � �∆BK	7       … (4) 25 

where, 26 

• � is a vector of camera parameters, 27 

• M, N, O, and P are respectively the sets of calibration point-difference, distances, and 28 

angular constraints, and equi-distnace constraints. 29 

• :∆<=:7 is the real-world distance between observed and back-projected calibration points 30 

in the ith set of point correspondences, 31 

• ∆?@ is the difference between observed and projected distances in the jth set of distance 32 

correspondence, 33 

• lC is the average length of the back-projected line segments on the pair of lines that defines 34 

the angular constraint, 35 
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• ∆F� is the difference between annotated and calculated acute angle between the kth back-1 

projected pair of line segments that defines the angular constraint, and 2 

•  ∆BK is the difference between the real-world length of a line segment calculated at two 3 

locations with different depth of view. This can be typically obtained by measuring the 4 

distance between two points on a vehicle traversing a traffic intersection.  5 

Point back-projection, i.e. mapping from image space to world space, is performed efficiently 6 

using the homography matrix R that corresponds to a set of camera parameters �. A least square 7 

estimation of the homography matrix is conducted using four points selected from M, using �. If 8 

the non-linear camera distortion parameter is estimated, back-projection using the homography 9 

matrix is not accurate. In this case, back-projection is cast as a minimization problem, such that 10 

the projection of the estimated world-space position, from world space to image space, achieves 11 

a minimum difference from the annotated image position. The initial estimate of this 12 

minimization problem is the world-space position of a point using homography. A basic Quasi-13 

Newton non-linear optimization is sufficient for accurate estimation of the world-space position.  14 

The cost function component that represents angular constraints has the useful property 15 

of being proportional to the length of the annotated line segments that define the angular 16 

constraint. This assigns larger weight to angles more precisely defined using long edges.  17 

The previous cost function describes linear discrepancies between observed and back-18 

projected geometric primitives, all expressed in real-world unit distance. This construction of the 19 

cost function clearly meets the previously proposed conditions. It is noteworthy that the 20 

construction of the cost function in pixel coordinates, commonly adopted in the literature, is 21 

significantly cheaper to compute than the proposed cost function. In the latter case, point 22 

projection to image space is a closed-form operation. The proposed camera calibration approach 23 

is designed as an accurate one-time operation to support data extraction from video surveys in 24 

which computational efficiency is of lesser importance. In addition, the expression of the 25 

projection error in pixel coordinates is implicitly biased toward features closer to the camera 26 

(represented by more pixels). This may not be desirable in all applications. For example, the case 27 

study based on the video sequence K1, shown in Figure 2 b, focuses on events that take place in 28 

the furthest intersection approach. 29 

3.3. Implementation Details 30 

The intrinsic camera parameters optimized under calibration are focal length, skew angle, and 31 

radial lens distortion. The extrinsic parameters are the translation and rotation (six parameters) of 32 

the camera coordinate system from the world coordinate system. The selection of these camera 33 

parameters yields more accurate results than if optimization is conducted for each element of the 34 

transformation matrices � and � (Equation 2). 35 

The minimization of the cost function in Equation 3 over the camera parameters is 36 

performed using the Nelder-Mead (NM) simplex algorithm. This algorithm was selected over the 37 
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commonly used Levenberg-Marquardt (LM) which failed in some cases to converge when the 1 

initial estimate of the camera parameters was not accurate. When both converged, NM was 2 

consistently more computationally expensive. Computational cost is of lesser importance for the 3 

applications targeted by this approach.  4 

The initial guesses for the case study described below were obtained using an estimate of 5 

the camera position in an orthographic map of the monitored traffic intersections, of the camera 6 

height, and of the location of the back-projection of the principal point on the road surface. The 7 

estimate for the focal length was found using previous information and assuming away 8 

perspective. Obtaining an accurate initial estimate of the focal length and camera height proved 9 

difficult and was in most cases far from the calibrated value. A similar issue was encountered for 10 

estimating the camera height of video sequences that were not collected by the authors 11 

(sequences K1, K2, and OK). The calibrated camera height for K1 and K2 were 11.5 m and 10.9 12 

m respectively, while their initial estimate was 5.5m. 13 

The implementation of this method was conducted in MATLAB (24). A toolbox was 14 

developed to annotate the calibration data, find initial estimates, conduct the camera calibration 15 

and visualize the calibration results. The following section provides a review of four case studies 16 

in which the proposed camera calibration approach provided adequate estimates of camera 17 

parameter. The intended applications were carried out successfully using the obtained camera 18 

parameters (2) (3).  19 

5. CASE STUDIES AND RESULTS 20 

The four case studies analysed using the proposed camera calibration approach are summarized 21 

in Table 1. Camera calibration is conducted for video sequences collected from the downtown 22 

area of Vancouver, British Columbia (video sequences 1-4 from site BR and sequence PG), 23 

Chinatown in Oakland, California (OK), and an unidentified intersection in Kentucky (K1 and 24 

K2). When possible, real-world data was extracted from an orthographic image from Google 25 

Maps and in-field distance measurements.  26 

5.1. Annotation of Calibration Data 27 

Corresponding points are annotated in image and world spaces. The real-world coordinates of 28 

points in the image space can be calculated from their position on the world map. The true length 29 

of line segments that constitute distance and equi-distance conditions is calculated from the 30 

orthographic image. In case of sequences BR-1:4, the real-world length of line segments was 31 

collected by in-field measurements (total of 21 in-field measurements using a measuring wheel). 32 

This was necessary to obtain camera calibration with accuracy that supports the measurement of 33 

pedestrian walking speed (refer to Table 1). Pairs of lines that constitute the angular constraints 34 

are annotated in the image space. These lines are parallel lane markings, parallel light poles and 35 

road-side signs, and perpendicular road markings. Figure 3 shows the calibration data for 36 

sequence BR-2. 37 
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a) 

 

b) 

 

Figure 3 Calibration data for video sequence BR-2. Point correspondences are annotated with their serial numbers. 
Points marked with red are calculated and points in blue are annotated. The segments in red define the distance 
conditions. The segments in blue define pairs of lines for angular conditions. Figure a) shows the calibration data 
(points, and lines) in the image space. Figure b) shows the back-projection of the calibration data to world-space. 

 1 

5.2. Effect of Difference Cost Function Components 2 

In order to investigate the effect of using a mix of geometric primitives, the cost function 3 

components in Equation 4 were incrementally introduced. The sizes of the different calibration 4 

datasets for each scene are shown in Table 1. Root Mean Square Error (RMSE) was calculated 5 

by leaving out one testing observation, from sets C and D, each at a time and adding up the error 6 

for each testing data point. The total number of iterations required for each scene is the 7 

maximum of the number of data points in sets C, D, and A. For example, the number of iterations 8 

is 13 for BR-1 and 12 for BR-2. The performance at scenes BR-3 and BR-4 is noteworthy given 9 

the limited number of calibration points available at these scenes. Figure 4a shows the reduction 10 

in back-projection error for sequences BR-1:4 and PG with the introduction of additional cost 11 

function components. 12 

In order to investigate the effect of the equi-distance constraint, the video sequence OK 13 

was selected. This sequence has the largest number of calibration data points besides having the 14 

challenge of being observed from an unknown camera setting location. Figure 4b shows the 15 

back-projection error using different compositions of the cost function. The error was calculated 16 

in terms of the difference between the calculated and true lengths of a validation set of 12 line 17 

segments. These line segments were not included in the calibration data set. 18 

There is a clear advantage of using calibration data in addition to estimates of point 19 

correspondences (four corner points which coordinates estimated based on an assumed lane 20 

width of 3.5 m) referred to as case 1 in Figure 4b. There is also an advantage over the use of 21 

angular constraints only (case 2) which is analogous to camera calibration based on vanishing 22 

 1

 2
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 7
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  6

  7  8

  9

  10

  11

Edges for angular 
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point estimation. The addition of all cost function components provides (case 4) however only 1 

marginal improvement compared to using point correspondences only (case 3). This likely 2 

occurs because of the abundance of accurately localized point correspondences in this video 3 

sequence. 4 

 5 

  a) 

 

b)  

 

Figure 4 An illustration of the reduction in camera calibration error due to the inclusion of various cost function 
components. Figure a)  shows the RMSE error of test sets BR-1:4 and PG. The RMSE error is calculated based on the 
error back-projection of all calibration points and distances, each left out one at a time for validation. Figure b) shows the 
back-projection error in terms of the difference between the true and calculated lengths of 12 line segments in sequence 
OK. The 12 segments were not used in the calibration. The length difference is normalized by the segments length: WFX� Y6Z[\X�]Z� \66Z6 � |_`abc # _defdbfe`cg|/_`abc.  

 6 

The effect of the addition of cost function components was more evident in sequences K1 and 7 

K2. The camera calibration for these sequences was the most challenging. The video sequence, 8 

collected from an unidentified site in Kentucky, contains a valuably large number of vehicle-9 
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vehicle traffic conflicts that were analyzed in a different study. The effect of non-linear lens 1 

distortion was visible for almost all observed line segments. As shown in Figure 5a, there is a 2 

clear advantage of adding all cost function components. The back-projection error was calculated 3 

based on the difference in the calculated real-world length of line segments observed from two 4 

different cameras for the same site, corresponding to datasets K1 and K2. Figure 5b shows the 5 

validation results for camera calibration with complete cost function components (case 5). 6 

a) 

 

b) 

 

Figure 5  The reduction in back-projection error due to the inclusion of different cost function components for video 
sequences K1 and K2. Figure a) shows the back-projection error measured as the difference between the real-world 
lengths of a total of 20 line segments calculated from two camera settings at K1 and K2. The discrepancy in the lengths 
of the validation line segments were normalized by each line segment length (average 12.57 m). Figure b) shows the 
lengths of the validation line segments for case 5. Refer to Figure 4 for the indication of cases 1:5. 
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 5.3. Visualization of Results 1 

In order to visualize the accuracy of the estimated camera calibration parameters, a reference 2 

grid is depicted in Figure 6 for sequences BR-2, PG, and OK. The reference grids for sequences 3 

K1 and K2 are shown in Figure 7. For sequences K1 and K2, the calibrated radial lens distortion 4 

parameter could explain the apparent distortion of the boundaries of the closer sidewalk. The 5 

distortion at the further sidewalks could not be completely captured. This demonstrates that 6 

additional non-linear parameters are required to capture other types of image distortion evident 7 

in this video sequence.  8 

Sample results of applications supported by the estimated camera parameters for these 9 

case studies are shown in Figures 8 and 9. 10 

6. CONCLUSIONS AND FUTURE WORK 11 

The use of video analysis techniques for transportation applications is on the rise. Camera 12 

calibration is necessary for recovering metric information from video sequences. Despite the 13 

development of successful methods, current approaches do not address critical issues that arise 14 

when monitoring traffic scenes, especially when high camera calibration accuracy is required.  15 

This paper proposed a robust camera calibration approach that overcomes several of these 16 

issues. As supported by the reported results, the novel composition of the cost function that 17 

defines the error in the camera calibration parameters helps integrating clues from various 18 

geometric regularities in traffic scenes. 19 

The formulation of this cost function in a linear algebra entails assumptions regarding the 20 

angular constraints. An important extension of this work is the reformulation of the cost function 21 

using geometric algebra in which different geometric elements can be uniformly represented. 22 

Further improvements to the method are the inclusion of additional non-linear parameters such 23 

as the tangential distortion that was evident in video sequences K1 and K2.  24 
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a) BR-2 

b) PG 

e) OK 

Figure 6 Refernce grid for video sequences BR
orthographic images. The grid spacing is 1 m and the height of the vertical reference lines (depicted in blue) is 4.0 m. 
Sequences BR-1 and BR-3:4 are recorded at the same site (BR) with differen
to BR-2 and omitted for space limitation. 

  2 

 

 

b) 

 

d) 

 

f)  

Refernce grid for video sequences BR-2, PG, and OK, overlaid over frames of the video sequence and 
orthographic images. The grid spacing is 1 m and the height of the vertical reference lines (depicted in blue) is 4.0 m. 

3:4 are recorded at the same site (BR) with different field of views. Their results grid are similar 
2 and omitted for space limitation.  

16 

 

 

 

 

, PG, and OK, overlaid over frames of the video sequence and 
orthographic images. The grid spacing is 1 m and the height of the vertical reference lines (depicted in blue) is 4.0 m. 

t field of views. Their results grid are similar 
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a) K1 

 

 

 

 

b) K2 

 

Figure 7 Reference grids for video sequences K1 K2. The non-linear calibration parameters could capture the 
distortions at the closer sidewalk of sequences K1 and K2. This is evident by comparing the curvature of crosswalk 
boundaries and the grid side (black dashed). The grid spacing is 2.0 m and the height of the displayed vertical line 
segment (depicted in blue) is 4.0 m. 

  1 
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 a) 

 

      c) 

Figure 8 In this traffic safety application, accurate road user tracks are required to measure their temporal and spatial 
proximity. Left are the back-projected pedestrian and motorist tracks. Right are the CV
road users. Figures a and b show the world and image space of video sequence PG (the study was reported in 
Figures c and d show the world and image space of video sequence OK.

  1 

 

 

   b) 

 

   d) 

traffic safety application, accurate road user tracks are required to measure their temporal and spatial 
projected pedestrian and motorist tracks. Right are the CV-based tracks of

road users. Figures a and b show the world and image space of video sequence PG (the study was reported in 
Figures c and d show the world and image space of video sequence OK. 
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traffic safety application, accurate road user tracks are required to measure their temporal and spatial 
based tracks of the interacting 

road users. Figures a and b show the world and image space of video sequence PG (the study was reported in (2)). 
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a) b)

Figure 9  Validation of walking speed measurements reported in (3). Horizontal axis depicts walking speed based on 
the time interval required to walk between two check lines. Vertical axis depicts the average walking speed within the 
same time interval based on automated pedestrian tracking. Figures a) and b) show the validation of walking speed 
measurements for two different sets, during day- and night-time respectively. 

 1 

 2 
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