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ABSTRACT 

Though a wealth of data exists for the characterization of pedestrian movement, a majority of said data 

originates from experimental settings owing to the current state of trackers for real-world scenarios. While 

these trackers are steadily improving, they remain insufficiently reliable for the accurate, microscopic tracking 

of individuals, particularly in cases of occlusion or higher density, complex scenes. We propose the use of 

evolution algorithms in the systematic calibration of the parameters of existing trackers in order to further 

optimize their performance – evaluated by tracking accuracy and precision metrics – in complex cases, with an 

initial focus on two tracking methods designed for multimodal analysis. Two real test cases were used a) a 

confined corridor in a public building and b) a subway station entrance during morning rush hour. Current 

results demonstrate a halving of tracking errors over both default and manually-calibrated parameters, as well 

as a strong correlation in performance between similar cases. For applications, flow characterization and 

directional counting are demonstrated.  



INTRODUCTION 

In recent years, active modes of transportation, especially walking, have been the focus of attention in 

transportation research. Conventional data gathering and surveying methods are limited in their scope for 

providing detailed information on pedestrians’ walking behavior. Therefore, computer vision-based automated 

data-gathering techniques have been used. These techniques are primarily utilized to extract trajectories and 

count data. Pedestrian tracking is, however, a difficult problem, particularly when seeking data of sufficient 

accuracy for the calibration of pedestrian flow models (1). While video tracking, unlike many other methods, 

has the potential to allow extraction of data for each and every pedestrian in the field of the video frame, it 

must contend with substantial challenges such as occlusion, grouping, and the myriad of visual effects (e.g. 

lighting, shadows, distortion, non-human moving objects) which can confuse an automated tracker (2). 

Currently, pedestrian model calibration using video data has for the most part relied either on data from 

experimental settings (3) or on video recorded in similarly favorable conditions (4). Though both sources 

undeniably provide valuable, accurate trajectory data, the applicability of either to larger, more complex cases 

is difficult. Furthermore, these tracking methodologies are impractical to apply to the majority of existing 

footage of public spaces, namely surveillance and other low-angle recordings. Recently, however, more 

generalized tracking methods, relying on the hybridization of methodologies and/or advanced filtering and 

human-detection algorithms, have made great strides. Within pedestrian-dominant settings, Measures Of 

Tracking Accuracy (MOTA, best possible value of 1 – see (5)) of more than 0.80 have been attained (6) 

though accuracies in the 0.50-0.60 range appear to be more common (7). Such measures are, however, difficult 

to interpret: tracker performance is dependent not only on a tracker’s attributes but also on scene complexity, a 

feature rarely prominent in their evaluation. 

This paper focuses on improving the performance of existing video-based trackers in pedestrian-

dominated environments. This is accomplished through the application of evolutionary algorithms to the 

underlying parameters of the trackers, with emphasis on both fine-tuning for diverse flow scenarios (ranging 

from low-density, uni-directional flow to high-density movement in multiple directions) and the applicability 

of the methodology to a variety of trackers. Evolutionary methods have been applied to pedestrian tracking 

before: (13) applied evolution strategies to improve upon the segmentation stage of a background-subtraction-

based tracker, achieving a 25 % decrease in positional error of the resulting tracks. In contrast, instead of 

targeting specific facets of the problem, our method aims at evolutionary optimization of the entire tracking 

method through calibration of all underlying parameters, with the goal of achieving solution parameters which 

are optimal, or near-optimal, for a given range of similar scenes. The flexibility of these simulation-based 

optimization methods make them favorable for use in highly non-linear, multidimensional search space 

problems, as at hand. In addition, they are easily transferable to similar cases. This means that the methodology 

developed in this paper can be applied to a wide range of trackers.  

The remainder of this paper is structured as follows. After the introduction, a review of the literature is 

presented, with particular emphasis placed on the two trackers subjected to the optimization algorithm. The 

next section describes the developed methodology, including the studied data-sources, the utilized performance 

metrics and describes the optimization algorithm itself. The presentation of the results follows. The paper ends 

with a brief overview of the resulting trajectory data, and finally conclusions and recommendations for further 

research. 

LITERATURE REVIEW 

Video-based tracking can, within most methods, be subdivided into two primary stages: detection of the 

objects to be tracked, and the data association of their movement through the image- or world-space (8). Each 



stage has been subject to a number of different approaches. A brief summary of recent works on the subject is 

presented in table 1. 

At the detection stage, feature-based tracking (used in (9), (10), (11) and (12)) consists of following 

distinct features (or groups of pixels, e.g. corners) as they move through the image. As features tend to be 

small, this allows the continuous tracking of partially-occluded subjects. However, the requirement that 

features move between frames leads to loss of a target if it remains stationary. Similarly, tracking-by-detection 

methods also detect pixel groups, though instead of moving features they search for predefined features. Such 

methods include shape and object detection: as humans tend to change shape during each stride, these shapes 

tend to be either the head (as in (19) and (20)) or both shoulders and head (18). These methods are therefore 

able to follow targets even if they stop for an extended period of time (or indeed, do not move at all) though 

they require an unobstructed view of the shapes they are designed to detect. Finally, background subtraction 

methods ((13), (14). (15), (16) and (17)) track movement as “blobs” over a static background. They have the 

advantage of requiring little to no consistency within tracked objects, at the cost of difficulty distinguishing 

objects that are too close together and making errors when associating trajectories to objects occluding each 

other. 

The subsequent stage consists largely of consolidating the raw observations into consistent, accurate 

tracks. This can be accomplished through means ranging from the simple deletion of clearly erroneous results 

(9) (e.g. objects moving too quickly or too erratically to be pedestrians) to the application of particle (17) or 

Kalman (21) filtering, to track inter- and extrapolation by fitting to a given model (15). Moreover, such 

methods are increasingly being hybridized, such as in (14) and (19). 

While accuracies are consistently improving across all these tracking methods, two primary issues remain, 

which constitute the focus of this paper. First, there is a tendency to evaluate their accuracy only within a small 

range of scene complexities. This makes application to extended real-world scenes problematic; a subway 

station, for instance, may experience a relatively constant, low pedestrian flow rate, punctuated by high-density 

surges following a train’s arrival. These two periods impose vastly different requirements on the utilized 

tracker (23). One’s ability to attain high performance on complex scenes is not necessarily indicative of 

performance in simpler ones: the bacterial foraging algorithm utilized in (14) performed markedly worse on 

the relatively low-density CAVIAR dataset than in crowded scenes. 

The second issue is the limited emphasis placed on the parameterization of the trackers. In the few cases 

where they are discussed, there is a tendency to either manually set parameter values to intuitive values, or to 

report results for a small number of such values in order to gauge their sensitivity. When automated calibration 

does occur, it is habitually focused on a particular facet of the tracking problem (e.g. Adaboost training of the 

shape detectors in (18) and (20), and evolutionary optimization of the segmentation stage in (13)). Global, 

systematic optimization of tracker has rarely (if ever) been addressed. 

Overview of the optimized trackers 

In this paper we selected two trackers for the purpose of parameter optimization. Following is a brief 

overview of both of them. 



Table 1 - Summary of selected pedestrian tracking methods. It should be noted that reported accuracies were evaluated in different scenes and with a variety of metrics, making 
direct comparison difficult. Pedestrian density in the table corresponds to a visual evaluation of density in the scenes: low density denotes that individuals are generally clearly 
separated, while high density implies substantial overlap and/or grouping of pedestrians. DR: Detection Rate, the ratio of accurate tracks as defined by each author. 

Tracking 

method 

Authors Year Novel contributions Test sequence 

characteristics 

Accuracy 

(metric) 

Parameterization Notes 

Feature-

based 

Saunier & 

Sayed (9) 
2006 Application to transportation systems 

Multimodal; low 

pedestrian density 

0.23-0.65* 

(MOTA) 
Manually set 

Designed for 

multimodal traffic 

Rabaud & 

Belongie (10) 
2006 Pedestrian counting in dense crowds 

High density, 

complex scenes 

0.78-0.93 

(DR) 
Partial training of detector 

Designed specifically 

for counting 

Ismail et al. 

(11) 
2010 

Automated video analysis for before/after 

safety evaluations 

Multimodal; low 

pedestrian density 
0.70 (DR) 

Optimization of a selection 

of tracker parameters  

Khanloo et al. 

(12) 
2012 

Hybridizes feature-based and Histogram of 

Oriented Gradients 

Low density, 

multiple directions 
Unreported Manually set PETS dataset 

Background 

subtraction 

Pérez et al. 

(13) 
2006 

Evolutionary optimization of the 

segmentation stage 
Single pedestrian Unreported Evolutionary optimization 

Optimization of only 

one tracker stage 

Berclaz et al. 

(14) 
2011 K-shortest paths optimization 

Low density, 

multiple directions 

0.58-0.86 

(MOTA) 
Undisclosed CAVIAR dataset 

Nguyen & 

Bhanu (15) 
2012 Bacterial foraging optimization Varied 

0.35-0.71 

(DR) 
Manually set 

Best performance in 

high-density scenes 

Jodoin & 

Saunier (16) 
2013 

Use of feature-points for object 

identification 

Multimodal; low 

pedestrian density 

0.68-0.93 

(MOTA) 
Manually set 

Designed for 

multimodal traffic 

Guan et al. 

(17) 
2013 Particle filter approach 

Low density, uni- 

and bi-directional 

0.63-0.92 

(MOTA) 
Manually set   

Tracking by 

detection 

Sidla et al. 

(18) 
2006 

Searches image for shoulder-and-head 

shapes 

High density, 

complex scenes 
0.89 (DR) Manually set 

Focused on pedestrian 

counts through tracking 

Singh, Wu & 

Nevatia (19) 
2008 

Completes tracks using low-confidence 

traces 

Low density, 

multiple directions 
0.73 (DR) Manually set CAVIAR dataset 

Ali & Dailey 

(20) 
2009 Confirmation-by-classification 

High density, bi-

directional 
0.77 (DR) Adaboost 

Head detection for 

dense crowds 

Jiang et al. 

(21) 
2010 

Hybridizes Histogram of Oriented Gradient 

(HOG) detection with color tracking 

Low density, 

multiple directions 
Unreported Manually set CAVIAR dataset 

Andriyenko & 

Schindler (22) 
2011 Tracking using energy minimization 

Low density, 

multiple directions 

0.33-0.85 

(MOTA) 
Manually set 

Tested with multiple 

sets of parameters 

*Measurements published in (16)



Traffic Intelligence 

The open-source Traffic Intelligence (TI) project is an implementation of feature-based tracking, 

described in (9). Initially designed for the monitoring of road traffic, TI is used for multimodal tracking of 

the complex movements within intersections, notably including conflict detection between vehicles and 

pedestrians. Utilizing a feature-based tracking method (specifically, the Kanade-Lucas-Tomasi method as 

implemented in OpenCV (24), (25)) it can cope with partial occlusion by following distinguishable 

elements of a moving object rather than the object as a whole, resulting in good accuracy when used in its 

intended cases (MOTAs between 0.6 and 0.85 (16)). Such cases, however, primarily involve vehicles: 

MOTA calculated for pedestrians alone tends to be lower (near 0.50) despite pedestrian density typically 

being very low. 

Urban Tracker 

Like TI, Urban Tracker (UT) (16) was designed primarily for road traffic, though in contrast to the 

previous tracker it utilizes background subtraction for moving-object identification and tracking, and 

seeks to make as few assumptions about the tracked objects as possible. Built around the ViBe 

background subtraction algorithm (26), UT expands the tracking method by identifying features of each 

tracked object (similarly to TI) allowing reacquisition in cases of fragmentation, grouping or occlusions. 

Direct comparisons with TI have demonstrated significantly higher accuracies in pedestrian tracking 

(MOTAs ranging from 0.70 to 0.90) in the same sequences as examined above, though again pedestrian 

density was low. 

METHODOLOGY 

Test cases 

Test data was collected from two locations. The first is a central hallway within Polytechnique 

Montreal, serving as the primary means of movement between the two buildings of the school, and 

including a stairway and access to auxiliary hallways and classrooms. This area was recorded from two 

angles, at separate ends of the corridor. The second location is the exterior of the subway station/bus 

terminal, in Montreal, with cameras covering both entrances as well as the entirety of the exterior 

terminal. From the latter location, an entrance with access from all four cardinal directions was selected as 

the primary focus for optimization due to its complexity. In both cases, multiple hours of video were 

recorded using wall-affixed wide-angle cameras at a resolution of 1280x720 pixels, during periods 

selected to include the busiest portions of the day. 

Tracks (ground truth) were entered manually for four separate one-minute sequences (figure 1) each 

selected to contain a range of densities as well as some cross- or bidirectional flow. In the Polytechnique 

sequence, these correspond to the end of morning courses, whereas in the case of the subway station they 

follow the simultaneous arrival of a bus and the outflow of arriving subway passengers. Two sequences 

were drawn from each location, covering the same area (from alternate angles in the case of 

Polytechnique); in each case, one sequence is used for calibration, and the second to test the 

generalizability of solutions to similar situations. Densities were estimated to range between 1 and less 

than 0.1 pedestrian per square meter, reaching the upper limit primarily in the subway station test 

sequence. All sequences, with the exception of the Polytechnique calibration sequence, include one or 

more loitering individuals whose limited movements served as an additional challenge for the tracker.



Fitness measure: MOTA & MOTP 

The primary fitness measure used in the optimization of TI is the tracking accuracy, as measured by 

MOTA. This metric requires a preliminary matching step between the tracks output by the tracker and the 

ground-truth. To count as a match within a given frame, a track must first be the closest track to the 

ground-truth object. Second, it must be within a maximum distance of said object; given our interest in 

microscopic model calibration, this maximum distance was set at one meter, based on average human 

build and step size. It should be noted that this, as well as the following, methodologies are a direct 

application of the CLEAR-MOT metric as defined in (5). Though this matching methodology can lead to 

arguably avoidable mismatches (e.g. at the intersection of two tracks, as was corrected for in (16)) the 

base method was maintained both for its reproducibility and to avoid interfering with any post-processing 

that may occur within the tracker. 

While the ground-truth was first established for all individuals visible in each scene, initial tests 

revealed the inability of the tracker to reliably track pedestrians smaller than 20-30 pixels without 

incurring substantial over-detection of larger/closer objects due to the increased sensitivity. In order to 

attenuate this problem, matching was therefore limited to the closer areas with higher complexity in both 

scenes (in proximity to bottlenecks, obstacles and multidirectional flow); these areas correspond to the 

approximately 35 meters of hallway between the two cameras in the Polytechnique sequences, and to 

within twelve meters of the camera in the subway station videos. To avoid unjustly penalizing the tracker, 

tracks more than one meter outside these areas were ignored. 

Once the matches have been computed, MOTA is calculated as: 

𝑀𝑂𝑇𝐴 = 1 −
∑ (𝑚𝑡 + 𝑓𝑝𝑡 + 𝑚𝑚𝑒𝑡)) 𝑡

∑ 𝑔𝑡𝑡
 

Where mt, fpt and mmet are the number of misses, false positives and mismatches, respectively, at 

frame t, and gt the number of ground truth objects in the same frame. Although MOTA has a maximum 

possible value of 1 (representing perfect tracking accuracy) negative values are possible if sufficient 

errors (false positives) are made. 

The Measure Of Tracking Precision (MOTP) represents the average distance between computed and 

real tracks across all frames and objects. As defined in (6), it ranges from zero (no error) to a maximum 

Figure 1 - Example frames taken from the four studied videos. a. and c. represent the calibration sequences recorded in Polytechnique Montreal 

and the subway station, respectively. b. represents the same location and movement complexity as a., but recorded at a different time by a camera 

installed at the opposite end of the hallway. d. represents footage taken from the same camera as c., yet recorded during the arrival of a bus, 

resulting in higher pedestrian volume and densities near the door. 



corresponding to the maximum matching distance. However, in order to facilitate its use alongside 

MOTA in the optimization algorithm via weighted average, MOTP was normalized to vary on the same 

scale and in the same direction according to the equation below: 

𝑀𝑂𝑇𝑃 = 1 −
∑ 𝑑𝑡

𝑖
𝑖,𝑡

𝑇. ∑ 𝑐𝑡𝑡
 

Where T, dt
i and ct represent the maximum matching distance, position error and total number of 

tracker points, respectively. 

Evolutionary optimization algorithm 

A simulated annealing algorithm was developed specifically for video-tracking optimization (27); its 

basic structure is summarized in figure 2. This algorithm was selected because it stochastically allows 

movement to less optimal solutions, permitting nimble avoidance of local maxima, particularly during the 

initial iterations. 

 

Every iteration i begins by running the tracker on the test sequence with a given set of parameters, or 

state. The resulting tracks are compared to the pre-established ground truth in order to establish MOTA 

and MOTP, of which the energy V’ is the weighted average. This is then compared to the prior energy V, 

and the algorithm moves to the new position with a probability P: 

𝑃 = min (1,
𝑒𝑇.𝑥.𝑉′

𝑒𝑇.𝑥.𝑉
) 

T is the current temperature of the algorithm, defined by: 

𝑇 =  𝜆 ln (1 + 𝑖) 

λ and x are constants which, together, determine the energy difference for which a move to a lesser 

energy state is likely at any iteration. In order to fix maximum downward movement to 0.05, x was set to 

10. λ controls the rate at which said maximum decreases between iterations; given that trackers vary in 

number and complexity of parameters (as well as running time) this constant was manually adjusted for 

each case. 

 

Figure 2 - Flow diagram of the parameter optimization algorithm. 

From the selected state, a neighbor solution is generated. The new state is generated by randomized 

selection of one to three parameters, followed by equally random – but bound – addition/subtraction. 

Boundaries were specified owing to the varying natures of the parameters, and were decreased whenever  



Table 2 - Parameters targeted for optimization in the two tested trackers. 

  Parameter name Type Min. Max. Description 

TRAFFIC INTELLIGENCE 

F
E

A
T

U
R

E
S

 

feature-quality float 0 1 Minimum quality of corners to track. 

min-feature-distanceklt float 0 10 Minimum distance between features, in pixels. 

window-size int 3 10 
Distance within which to search for feature in next frame, in 

pixels. 

pyramid-level int 1 - Maximum pyramid level for feature tracking. 

ndisplacement int 2 4 Number of displacements to test minimum feature motion. 

min-feature-displacement float 0 0.1 Minimum displacement of features between frames (pixels) 

acceleration-bound float 1 3 Maximum ratio of speeds between frames. 

deviation-bound float 0 1 Maximum cosine of feature trajectories between frames. 

smoothing-halfwidth int 0 11 Number of frames to smooth positions. 

min-tracking-error float 0.01 0.3 Minimum error to reach to stop optical flow. 

min-feature-time int 5 25 Min. time (in frames) a feature must exist to be saved. 

O
B

JE
C

T
S

 

mm-connection-distance float 0.5 2 Distance to connect features into objects, in meters. 

mm-segmentation-distance float 0.1 1.9 
Segmentation distance, in meters. Must be less than 

connection distance. 

min-features-group float 1 4 Minimum number of features required to create a group. 

H
O

M
O

G
R

A
P

H
Y

 

elevation-1 float 0 1.5 

Elevations relative to ground-level of each of the four points 

used to calculate the homography matrix, in meters. 

elevation-2 float 0 1.5 

elevation-3 float 0 1.5 

elevation-4 float 0 1.5 

homography-correction float -0.5 0.5 
Elevation difference between tracker and ground-truth 

homographies, in meters. 

URBAN TRACKER 

B
A

C
K

G
R

O
U

N
D

 

S
U

B
T

R
A

C
T

IO
N

 bgs-minimum-blob-size int 10 - Min. size of blobs, in pixels. 

max-lost-frame int 1 - 
Max. number of frames to continue searching for a lost 

object. 

max-seg-dist float 0 1 
Max. distance between two blobs to be considered on object, 

as a ratio of blob diameter. 

max-hypothesis int 1 - Max. frames to consider an object hypothesis. 

minimum-match-between-

blobs 
int 1 - 

Min. number of matching features to establish two blobs as 

the same object. 

F
E

A
T

U
R

E
 

D
E

T
E

C
T

IO
N

 

brisk-threshold int 1 20 Threshold determining minimum quality of features to detect. 

brisk-octave int 1 5 Number of layers to use in feature detection for each frame. 

match-ratio float 0 1 
Min. matching ratio between second-best and best match for a 

given object. 

F
U

N
C

T
IO

N
S

 

urban-isolated-shadow-

removal 
boolean 

  
Automated shadow removal. 

verify-reetering-object boolean 
  

Verifies whether entering objects correspond to preexisting 

ones. 

bgs-remove-ghost boolean 
  

Retroactively removes blobs if they are not associated to an 

object. 

H
O

M
O

G
R

A
P

H
Y

 elevation-1 float 0 1.5 

Elevations relative to ground-level of each of the four points 

used to calculate the homography matrix, in meters. 

elevation-2 float 0 1.5 

elevation-3 float 0 1.5 

elevation-4 float 0 1.5 



the algorithm stagnated for a sufficient number of iterations in order to strike an acceptable balance 

between convergence time and an optimal final solution. Once new parameters are selected, they are fed 

back to the tracker, and the following iteration begins. 

Application of this framework to a given tracker requires only two adjustments to the underlying 

functions.  The first of these is to ensure that the tracker’s output is compatible with the ground truth, 

itself defined as the center of the bounding box for each individual. Given methods that identify particular 

features of pedestrians (a notable example being head-detecting methods) some correction is required in 

order to avoid unjustly penalizing the tracker’s evaluated performance. 

While UT computes bounding boxes and therefore requires no particular adjustment, feature-based 

tracking methods such as TI exhibit higher detection rates on the relatively static upper body. When 

computing positions within the video-frame, the correction factor for the latter tracker would therefore 

consist of lowering the position of the detected object. In the cases tested, in contrast, where tracking was 

performed in the world-coordinates via a pre-established homography, correction was instead achieved by 

automated repositioning of the points in the image-space used for calculation of the homography matrix. 

In both cases, the correction factor was included as an additional parameter for optimization. 

The second required adjustment to the algorithm is that of the function regulating the parameter state 

generation function between iterations. The parameters for the tested trackers are presented in table 2. In 

TI, 14 parameters affect the tracking process and were therefore optimized. These parameters can largely 

be divided into two primary functions: 11 influence feature detection and tracking (notably, minimum 

quality of features to track and bounds on acceptable movement between frames) and 3 influence the 

grouping of detected features into objects (i.e. how many features are required to create an object, and 

how similar their behavior must be to be considered as belonging to the same pedestrian). In UT, 11 

parameters manage tracking behavior, functionally subdivided into three groups: background subtraction 

(e.g. minimum size of blobs to track), feature detection, and three Boolean values regulating the use of 

specialized sub-functions, such as automatic shadow removal for outdoor scenes. 

To these, four additional but functionally identical parameters were added. Given that pedestrians are 

generally taller than wide and that video sequences focused on pedestrians were expected to be recorded 

at close range and low angles, establishing the homography matrix through the use of points at ground 

level (as is typically done with TI for road safety analysis) is problematic. Therefore, in order to 

accommodate both the difficulty of predicting the elevation at which pedestrians would ultimately be 

detected and that of establishing that elevation in the video frame, point correspondences were entered as 

four in-frame vertical lines, and the elevations to use in computing the homography were included as four 

additional parameters for optimization. 

RESULTS 

In order to form a basis for comparison, MOTA and MOTP were evaluated for parameters calibrated 

manually on the calibration scene by the authors of the respective trackers. The algorithm was run three 

times from different initial states; only the last of these is reported here, though the first two are discussed 

in the following section. In all cases, performance was significantly higher after algorithm optimization 

than using manual calibration (table 3). In the case of UT, a relatively simple pedestrian-only scene used 

in the original paper was made available, alongside the utilized parameters. Applying the algorithm to this 

scene also demonstrated substantial improvement (MOTA of 0.94 vs. 0.86) implying that the observed 

amelioration is not solely a result of lax parameter selection. 

 



Table 3 - MOTA/MOTP (in meters) after both algorithm and manual optimization (performed by one of the tracker's authors) on the calibration 

cases. UT consistently crashed during tracking when applying the manually-selected parameters to the subway station test scene (a known error 

within the tracking software) so no results could be reported. 

  Traffic Intelligence Urban Tracker 

Tracking parameters: Calibration scene Test scene Calibration scene Test scene 

Polytechnique Corridor 

     - Manual  0.28/0.52  0.48/0.49  0.70/0.71  0.10/0.71 

 - Algorithm-calibrated  0.59/0.53  0.52/0.59  0.89/0.70   0.42/0.72 

Subway Station Entrance 

     - Manual  -0.01/0.49  -0.22/0.54  -1.62/0.61 - 

 - Algorithm-calibrated  0.51/0.56  0.26/0.56  0.54/0.67  0.38/0.66 

 

Performance of both trackers deteriorates when the calibrated parameters are applied to the test 

sequences, but remains better than manual calibration on the same test scenes. Within the Polytechnique 

sequence, this may be a result of over-specialization for the point of view of the test scene, and is more 

marked in the case of UT. Between the two subway station scenes, the higher density test sequence 

appears to be substantially more difficult than the calibration sequence, likely a result of the increased 

pedestrian grouping involved. Performance differences are however not limited to the algorithm, as the 

manually-calibrated parameters demonstrate proportionally larger variations.  

Traffic Intelligence 

When applied to TI, the algorithm converged to a solution within approximately 900 iterations 

(roughly 30 hours of processing on a 2.67GHz Intel i5 processor) in both cases. TI’s performance appears 

more dependent on the complexity of the pedestrian movement than on geometry or camera angle. The 

two Polytechnique sequences, ostensibly of similar complexity but with opposite camera angles, 

demonstrate comparable MOTAs and proportions in their errors. Conversely, application of the subway-

station-optimized parameters to the superficially identical test sequence (which in fact represents footage 

from the same video, recorded only two minutes prior to the calibration sequence) yields half the 

accuracy and a markedly higher number of misses (typical observed errors are examined in greater depth 

in the next section). As similar behavior occurs in UT, this is likely attributable to increased difficulty in 

the test sequence, a hypothesis supported by the increased densities visible in the video. 

Urban Tracker 

UT is a markedly slower tracking method than TI, with run-times per iteration ranging from one to 

three hours, depending on the utilized parameters and hardware. The algorithm was therefore terminated 

after only 90 iterations (more than 100 hours) and included some manual tuning, specifically fixing the 

Boolean parameters once their effect appeared to be established. Fortunately, convergence was markedly 

faster than TI’s, likely owing to the reduced search-space resulting from a lower dimensionality. The 

resulting pedestrian tracks displayed both higher accuracy and precision than the former tracker in all but 

the Polytechnique test sequence. Comparisons with the manually-set parameters and between successive 

iterations of the algorithm, however, exhibit increased sensitivity with regards to both the input 

parameters (particularly those affecting background subtraction) and to camera position. 



DISCUSSION 

As noted previously, the presented results are those of a third run of the optimization algorithm, 

which used the manually-calibrated parameters as the starting point. The first and second were initiated 

from the “generic” (taken from examples provided by the authors) and randomized parameters, 

respectively, and in both cases tracker performance improved slowly: after 3000 iterations, tracks 

produced by TI had MOTAs of less than 0.30 when initial parameters were randomly set.  

Visualizing these tracks before and after optimization in the initial runs suggests that the difference is 

not primarily a consequence of the algorithm itself, but a result of a qualitative difference in the original 

tracks leading to alternative optimization strategies. Tracks generated using random parameters consist 

largely of noise (particularly in the case of TI) and optimization of said parameters seems to lead to 

heuristic strategies; for example, decreasing feature-detection sensitivity and increasing the grouping 

range, leading to accurate detection of groups, but also the inability to distinguish the individuals within 

them. In contrast, manually-calibrated TI tracks movement relatively well, limiting the problem to, 

primarily, one of grouping and homography. This advantage also translates into the faster observed 

convergence (a half-correct global optimum has better performance, and is therefore easier to detect, than 

“half-correct” noise) and more generalizability (as the tracker’s performance is not as tied to the specifics 

of the calibration scene). 

The energy function also proved problematic during the initial runs. While MOTA can only be 

improved through error reduction and better association of detected-to real objects, the simple matching 

heuristic utilized in calculating MOTP means measured precision can be improved simply by increasing 

the number of potential matches. At relatively low values of both metrics, it is therefore easier to improve 

their weighted average through increased noise than by the desired overall improvement of tracks, 

effectively trapping the algorithm in local maxima with good precision at the expense of accuracy. In 

order to attenuate this effect, MOTP is only included in the energy function once overall performance is 

judged near-optimal, and then only with a relative weight of 10 %. 

Despite the performed optimizations, certain types of error remained common in both trackers, as 

can be seen in figure 3. In the Polytechnique corridor sequences (Fig. 3.a and 3.b) while pedestrian 

detection was excellent and very few misses occurred, over-detection was problematic in both trackers, 

namely TI associating two foreground objects to a single pedestrian and UT identifying two individuals as 

both two distinct objects and an additional object encompassing both. It should be noted that in TI’s case, 

this over-detection in the foreground was accompanied by an increased number of misses in the 

background, whereas UT displayed no such phenomenon. This likely accounts, at least in part, for the 

latter’s increased accuracy, and implies that TI was partially being optimized for a given range 

corresponding to the center of the tracked area. This type of error is equally penalizing to MOTA as 

misses would be, but is arguably preferable given that they may be eliminated through additional filtering 

(e.g. eliminating objects too close to others in the TI example and objects that are too large in UT). UT 

already includes some such filtering, though as it relies on two objects merging before – or diverging after 

– a period of grouping, it fails if no such events can be observed. 

In the subway station sequence, conversely, the higher pedestrian density results in both trackers 

occasionally over-grouping pedestrians, as shown in figures 3.c and 3.d. In TI, this can lead to the rather 

aberrant traces such as exemplified in the figure, as the tracker attempts to ascertain the position of an 

object based on features from two distinct individuals. Unlike over-detection, over-grouping 

unfortunately does not lend itself to post-processing solutions akin to filtering, and such errors therefore 

represent strict limitations of the trackers themselves. 
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Figure 3 - Typical errors observed after parameter optimization. a. and b.: Over-detection in the foreground of the hallway sequence. c. and d.: 

Grouping errors in the subway sequences. e. and f.: Detection of the subway station doors generated extra tracks. 



A final notable error, which lead to a large number of false positives in the subway station 

sequences, is detection of the movement of the station’s doors (figures 3.e and 3.f). Such errors are likely 

unavoidable given the tested trackers inability to distinguish humans from other objects of similar size 

and speed (without simply excluding the doors’ arc from the tracked area, at least) but, much like over-

detection, such tracks could be deleted in post-processing as they are distinguishable by their limited 

length. 

TI’s sensitivity to the distance of tracked objects from the camera suggests that it may be even more 

finely tuned if the tracking area is reduced. If the tracker can be optimized to track only specified narrow 

bands, it may serve as an accurate and reliable pedestrian counter using only typical surveillance footage, 

particularly given that the precision and matching requirements could be relaxed. 

APPLICATIONS 

Despite the errors which persisted after optimization, parameter calibration for specific scenes 

allowed improved automated extraction of flow characterization and cordon counting. Examples of such 

data were extracted from the full two hour video recorded in the Polytechnique corridor utilizing 

algorithm-optimized TI (UT was shown to provide higher quality tracks, yet TI’s substantially faster 

tracking was selected for convenience). Said examples are presented in figure 4. 

Pedestrian speed is estimated by averaging the instantaneous speed from every second (or 30 frames) 

of a tracks’ existence. The resulting speed distribution (figure 4.a) and median speed of 1.38 m/s are 

comparable to results presented in (28), with outliers at lower speeds contributable to punctual density 

increases. 

Counts (figure 4.b) are measured through the establishment of pairs of parallel lines set side-by-side; 

the sequence in which a track crossed these lines establishes direction. These lines were placed on four of 

the five accesses to the centre of the corridor (figure 4.d), excluding the hallway to the west due to the 

camera angle precluding vision of its entrance. The average error when compared to manual counts was 

38.2 %, though there is an apparent negative correlation of accuracy with distance from the camera: error 

in the background/northern access was 67.6 %, whereas in the foreground/south access it was as little as 

9.2 %. For any future counting applications, it is suggested that a steep camera angle and proximity be 

maintained to the region within which counting is required. 

This under-performance at longer viewing distances is also observed in densities (figure 4.c) 

represented by a heat map of pedestrian traces (i.e. detections at each frame). Pedestrian detection 

decreases towards the north to an extent which is unlikely solely a result of the widening of hallway. In 

contrast, the more accurately tracked southern access display flow behaviour highly consistent with both 

the manual counts and observations (a majority of pedestrians in the scene are walking towards the tunnel 

access in the south and tend to keep to their right) as well as the geometry of the corridor, with two 

distinct primary paths leading to and from the two out-of-frame doors. 



Figure 4 - Data extracted from the full video sequence of the Polytechnique corridor. a.: speed distribution of tracks; b.: tracker and manual 

cordon counts of pedestrians traversing the lines defined in d.; c.: heat map of tracks in the tracked space, divided into 0.4 m hexes. In both c. and 

d., the figures are oriented so that north is at the top of the map. 
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CONCLUDING REMARKS 

The improvements offered by the algorithm show promise, particularly given that the sequences 

tested were chosen specifically for their complexity. An obvious next step will be the comparison of 

optimized TI and UT with other trackers on a same dataset. More interesting, however, will be the use of 

the developed optimization algorithm with other candidate trackers; indeed, the modularity of the 

optimization code greatly facilitates the swapping of one tracker for another, the only fundamental change 

being the modification of the neighbor-solution generator. It will be interesting to note whether the 

consistency in relative performance is a feature of sufficient optimization or solely one of the studied 

tracking method. To facilitate broader usage of the code on optimization, flow characterization and 

counting, it is available upon request and will soon be released as an open source project (the optimized 

parameters are also available on request and will be made available on a public website). 

In addition to the state generation and functional form of the optimization function, the starting set of 

parameters greatly affects the search process in the evolutionary algorithms. Here we experimented with 

three different starting points i.e. default set of parameters suggested by the trackers’ authors, random set 

of parameter values, and parameter set suggested by an expert after evaluation of the scenes. Search based 

on the last set of starting parameters greatly outperformed the other two. This is probably because of a 

weaker state generation function. Note that in our implementation, the generation function is not taking 

into account any correlations that may exist between parameters. Furthermore, the highly nonlinear nature 

and multidimensionality of the search space may necessitated a good starting point.  

One final option afforded by the use of an evolutionary algorithm is the hybridization of trackers. By 

both combining the outputs of two or more trackers and sufficiently parameterizing the merging, addition, 

and/or interpolation of tracks, the existing algorithm could be adapted to “learn” tracking methods 

superior to the sum of their parts. 

The paper reported two applications in the real case studies. In first we demonstrated the flow 

characterization using heat maps and speeds distribution from the pedestrian trajectories extracted by 

optimized trackers. While in the second application we demonstrated the extraction of cordon counts for 

pedestrians. The validation process gives us the confidence to use the code developed in this paper as a 

generic framework for automated data collection on pedestrian movement. 
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