Pedestrian-cyclist Interactions at Bus Stops along Segregated Bike Paths: A Case Study of Montreal

Authors: Amir Pooyan Afghari1, Karim Ismail2, Nicolas Saunier3, Abhisaar Sharma4, and Luis Miranda-Moreno5

1PhD Student
Department of Civil, Geological and Mining Engineering
École Polytechnique de Montréal,
2900 Boulevard Edouard-Montpetit Montréal, QC H3T 1J4
Phone: +1 514 3404711 Ext. 4210
Email: amir-pooyan.afghari@polymtl.ca

2Assistant Professor
Department of Civil and Environmental Engineering
Carleton University
3432 Mackenzie, 1125 Colonel By Drive, Ottawa, K1S 5B6
Phone: +1 (613) 520-2600 Ext. 1709
Email: karim.ismail@carleton.ca

3Assistant Professor
Department of Civil, Geological and Mining Engineering
École Polytechnique de Montréal,
2900 Boulevard Edouard-Montpetit Montréal, QC H3T 1J4
Phone: +1 (514) 340-4711 Ext. 4962
Email: nicolas.saunier@polymtl.ca

4Undergraduate Student
Department of Computer Science and Engineering
Indian Institute of Technology Ropar
Nangal Road, Rupnagar, Punjab, INDIA - 140001
Email: abhisaarsh@iitrpr.ac.in

5Assistant Professor
Department of Civil Engineering and Applied Mechanics
McGill University
Room 268, Macdonald Engineering Building, 817 Sherbrooke Street West, Montréal H3A 2K6
Phone: +1 (514) 398-6589
Email: luis.miranda-moreno@mcgill.ca

Words count: 5115
Tables: 3 @ 250 = 750
Figures: 8 @ 250 = 2000
Total = 7865
ABSTRACT
Safety is one of the major world health issues, and is even more acute for “vulnerable” road users, pedestrians and cyclists. At the same time, public authorities are promoting the active modes of transportation that involve these very users for their health benefits. It is therefore important to understand the factors and designs that provide the best safety for vulnerable road users and encourage more people to use these modes. Qualitative and quantitative shortcomings of collisions make it necessary to use surrogate measures of safety in studying these modes. Some interactions without a collision such as conflicts can be good surrogates of collisions as they are more frequent and less costly. To overcome subjectivity and reliability challenges, automatic conflict analysis using video cameras and deriving users’ trajectories is a solution to overcome shortcomings of manual conflict analysis. The goal of this paper is to identify and characterize various interactions between cyclists and pedestrians at bus stops along bike paths using a fully automated process. Three conflict severity indicators are calculated and adapted to the situation of interest to capture those interactions. A microscopic analysis of users’ behavior is proposed to explain interactions more precisely. Eventually, the study aims to show the capability of automatically collecting and analyzing data for pedestrian-cyclist interactions at bus stops along segregated bike paths in order to better understand the actual and perceived risks of these facilities.
INTRODUCTION

Active modes of transportation including walking and cycling are becoming more popular among users and planners. The growing interest in non-motorized transportation facilities is motivated by the healthy and environmentally friendly nature of these modes. In Canada, one of the largest portions of Green House Gas (GHG) emissions is caused by motorized transportation (1). Walking and cycling are strongly associated with reduced risks of obesity and cardiovascular disease (2–4). In addition, there are benefits from the perspective of the road agencies, e.g., reducing road congestion, traffic delay, and road maintenance treatments.

A wider adoption of active modes of transportation requires attractive design of traffic facilities (5,6). The design can be appealing based on increased mobility, easy accessibility, and improved safety. Road safety is one of the major concerns for individuals, parents and governments. It is important for traffic facilities which are aimed to encourage walking or cycling to improve both objective safety and users’ perception of safety. In particular, a major, yet poorly studied, conflict zone for active transportation facilities is at bus stops along segregated bike paths. In these cases, pedestrians are forced to cross the bike path in order to stand in line for the bus. Due to the fact that pedestrians usually move in groups especially in cases of queuing for public transit, the limited space between the bus stop and the segregated bike paths generates hazardous conditions. The problem is exacerbated in cases of dense areas with higher volumes of users, in particular more vulnerable users such as students near schools or colleges. Those users typically congregate into groups while waiting and may thus be more likely to collide with cyclists in the paths.

Interactions among road users can occur in various forms from severe fatal collisions to safe undisturbed passages (7). Although safety has been traditionally measured using collision data, there are concerns in the literature regarding the exclusive reliance on collisions. One of the strongest criticisms is that collision-based models are reactive and require long observation periods. These shortcomings have led researchers to develop pro-active approaches which can measure road safety in a timely manner and ideally before accidents occur. Traffic Conflict Techniques (TCTs) are the most frequently applied among the methods for surrogate safety analysis. Since their introduction in the late 1960’s, several quantitative indicators have been defined to capture users’ proximities in time and space which can relate to a measure of conflict “severity”.

Conflict observation can be obtained manually, semi-automatically or fully automatically. Manual observations raise questions about intra and inter-observer reliability in rating conflicts as observers may make errors and have differing evaluations of the same interactions. The term interaction is used to refer to more general situations than conflicts, in which two road users are close enough, i.e., are present simultaneously in the area of interest. Automated methods relying on video data offer a promising array of tools for objective conflict assessment. Video cameras are inexpensive and widely deployed. Mobile video units can be used for temporary data collection (8). Road user trajectories, i.e. their positions in every image, can be extracted automatically from video data using computer vision techniques (9). These methods can also be applied to pedestrians and cyclists, although the task is more complicated because of their size (smaller than motorized road users), their varying appearance, and overall more complex motions (fast changing speed and orientation). While surrogate safety analysis has been applied to motorized safety in many studies, whether automated or not, few studies have been dedicated to vulnerable users because of the aforementioned complexities.
The goal of this paper is to identify and characterize various interactions between cyclists and pedestrians at bus stops along bike paths using a fully automated process. Three conflict severity indicators are calculated and adapted to the situation of interest to capture those interactions. A microscopic analysis of users’ behavior is proposed to explain interactions more quantitatively. Eventually, the study aims to show the capability of automatically collecting and analyzing data for pedestrian-cyclist interactions at bus stops along segregated bike paths in order to better understand the actual and perceived risks of these facilities.

BACKGROUND

According to a study in 2013, 27% of fatal road collisions in Canada and 30% of the ones in British Columbia involved pedestrians and cyclists (10). These two modes are popular in the City of Montreal (11). According to 2006 Canadian Census, 20% of population use public transportation combined with walking or cycling modes in Montreal (12). Due to the high portion of active mode users, many plans and legislations are being applied to improve pedestrians’ and cyclists’ safety (13).

The current state of practice for assessing active transportation safety is based on collision records data and collision prediction models (4,14). However, the use of collision records for safety diagnosis has serious drawbacks. The most challenging issue with road collisions is their rare occurrence and costs (15). Also, not all collisions are reported and levels to reporting vary for different road users, locations, and severities. This is compounded due to the limited details and accuracy of collision records. Drawbacks of collision-based approaches are even more acute for vulnerable road users (16). While pedestrian collisions have more severe consequences, they are even less frequent than collisions involving motorized road users. Therefore, it is a practical necessity to define other safety indicators that are based on frequent events, observable in traffic, that have a logical and statistical relationship with collisions and cover more levels of severity (15).

The concept of traffic conflicts was first proposed by Perkins and Harris in 1967 (17). A common conceptual definition of a conflict is “a traffic conflict is “an observable situation in which two or more road users approach each other in space and time to such an extent that a collision is imminent if their movements remain unchanged” (18). To estimate what would happen if movements remain unchanged; this definition requires specifying a motion prediction method at each instant to determine the existence of a collision course. The often used and rarely justified method is motion prediction at constant velocity. Other methods have been tried and are demonstrated to produce more robust identifications of the collision course and indicator measurements (19). Several quantitative indicators for traffic conflicts were developed over the years to capture the “severity” or proximity of the conflict to a potential collision or probability of collision (20). Laureshyn (21) provides an exhaustive list of such indicators. Time To Collision (TTC) and Post Encroachment Time (PET) are among the most used indicators, with different capabilities of capturing the conflict severity.

There is a fundamental difference between PET and the other indicators: the latter depend on motion prediction methods used at each instant while PET is observed and yields only one measure for a whole conflict. TTC is the most used conflict indicator in the literature due to its ability to capture severity. It is defined as “the time that remains until a collision between two vehicles would have occurred if the collision course and speed difference are maintained” (22). PET, however, is defined only in cases where
the road users’ observed trajectories cross as the time difference between the instants at which the two road users pass the crossing zone \((23,24)\). According to \((25)\), none of the evaluated indicators, including TTC based on constant velocity and PET, was solely capable of capturing a significant amount of conflicts. A combination of these indicators, however, was well capable of identifying the majority of conflicts \((25)\). The issue of the lack of collision course is largely caused by the use of inadequate and restrictive motion prediction methods and can be easily addressed with recent work \((19)\). However, determining which indicators are sufficient to describe conflict severity and can best measure safety is still an open question.

To the authors' best knowledge, although there is some collision-based research on cyclist-pedestrian interactions in the literature, there is no previous work on assessing conflicts and interaction behavior between these two types of users.

METHODOLOGY

General Framework

Based on past research in Traffic Conflict Techniques (TCT) and other methods for surrogate safety analysis, this paper describes a framework for the analysis of hazards for vulnerable road users including cyclists and pedestrians at bus stops along segregated bike paths. Tracks of cyclists and pedestrians are automatically extracted using computer vision techniques. Subsequently, the analysis evaluates cyclists and pedestrians at high risk areas where pedestrians have to cross bike paths to get on the bus. Such interactions involve the behavior of the passing user who first arrives at the conflicting area (offended) and the approaching user who creates unsafe conditions to the offended user (conflicting). While PET is used in this study as the primary conflict indicator to capture severity, the TTC and predicted PET \((pPET)\), as defined later, are also evaluated.

Recorded videos are analyzed and users’ trajectories are extracted using computer vision techniques. The conflict indicators are calculated using kinetic laws on the output trajectories by the video analysis software. Interactions of different levels of severity are then identified and compared to a minimum threshold to identify unsafe interactions. The final output of this framework is the visualization and evaluation of cyclist-pedestrian behavior at bus-stops along segregated bike paths. Users’ trajectories along with a distribution of PETs, TTCs and other indicators describing the interaction such as speed are used to evaluate the safety associated with the facilities.

Video Analysis

Videos are captured by cameras installed on mobile poles at desired locations at a height of about 12 m \((8)\). The first step of video analysis is camera calibration, correcting for perspective error. Perspective makes objects further from the camera appear smaller and the camera optics may cause distortion. There are two main types of methods to recover or estimate the object actual coordinates on the ground plane in distance units, e.g. meters: the first is to obtain a complete camera calibration \((28)\), the second is to directly estimate a homography matrix that can transform image coordinates into world coordinates. The second, simpler method is used in this study. The homography is estimated using at least four non-collinear points with known real world coordinates.
The camera used in this study exhibited visible distortion, known as “fish eye effect”. Because the distortion in the central area of the field of view where the analysis is performed was limited (Figure 1) and because simple available methods to correct this distortion involve re-mapping the images with various methods for interpolation and re-compressing the video and therefore degrade the video quality, no correction was done for this study.

Figure 1. Video frame image affected by perspective and fish eye effect

Tracking is based on the Kanade – Lucas - Tomasi algorithm and the grouping of these features into a coherent object described in (9). Speed and direction of movement are selected as the criteria for automated user classification (to differentiate trajectories of pedestrians with cyclists). While the velocities of cyclists have the same direction as the segregated bike path, pedestrians cross the bike path. Hence, comparing angles of velocity vectors with a reference vector, users are differentiated by their direction of movement. A set of straight-moving cyclists’ velocities along the bike path are selected and the 85th percentile of the entire set of velocities is considered as the reference. All the tools used in this section to extract road user trajectories are available in the open source Traffic Intelligence project (8)(29).

Conflicting Zones and Safety Analysis
In order to evaluate the interactions between cyclists and pedestrians who intend to get on a bus, specific zones with the potential for collisions between the two categories of road users are identified. In order to cover a wider zone and accordingly more interactions, the whole area used by embarking passengers, which encompasses a larger zone than the crosswalk, is selected as the conflicting zone. This zone is fixed during the whole analysis.

Three conflict indicators are used in the safety analysis to characterize the interactions: PET, TTC and pPET. Important events are defined as situations when cyclists and pedestrians temporally co-exist inside the conflicting zone, in which case a PET can be computed. When interacting in the area under study, the users may be before, inside or after the zone. This study considers all situations in which a cyclist is moving toward a pedestrian that is in or about to enter the bike paths to get on a bus, as well as cyclist already past such a pedestrian. These situations are called interactions and are the basic precursor considered for more severe interactions (conflicts with urgent evasive actions) and collisions. In fact, important events are a subset of interactions, since a PET may not be computed for all interactions.

PET is calculated as the observed time difference that it takes for the second user to enter the crossing zone after the first one leaves. To calculate PET for pairs of users, offended user’ trajectories are analyzed
to derive the moment it leaves the region of interest \((t_{p2} \text{ or } t_{c2})\). The whole bike path area in the video image is then analyzed to identify all other conflicting users existing at that time (valid conflicting users). Subsequently, all valid conflicting users are being tracked until the moment that they enter the region \((t_{c1} \text{ or } t_{p1})\). PET will be the difference between these observed instants \((t_{c1} - t_{p2} \text{ or } t_{p1} - t_{c2})\) (Figure 2).

![Region of interest for PET Analysis; Time instants of users’ entrance and departure](image)

The other indicator used to capture conflicts severities is TTC. To simplify the TTC calculations, motion prediction at constant velocity is used, which is reasonable at least for the cyclist in the bike path. The intersection of the road users’ trajectories, or potential collision point, is identified, and whether the road users are getting further (diverging interaction) or closer (crossing interaction). For crossing interactions, the road users’ predicted arrival times at constant speed can be computed. A collision threshold \(D_{\text{collision}}\) is used to represent the road user’s volume, the noise in the data and the uncertainty of the prediction. The times \(t_{\text{up}}\) and \(t_{\text{down}}\) at which each road user reaches the points at \(D_{\text{collision}}/2\) upstream and downstream of the collision point are computed and compared. If the intervals \([t_{\text{up}}, t_{\text{down}}]\) for the two road users overlap, the road users are on a collision course and TTC is computed as the center of the intersection of the two intervals. Otherwise, pPET is computed as the smallest time difference between the two intervals. The implementation is available in the Traffic Intelligence project (29). Other prediction methods taking into account the road users’ normal adaptation are being explored for future improvements.

RESULTS AND DISCUSSION

Data

The case study presented in this paper is a bus stop along a segregated bike path in the city of Montreal, Canada, on Chemin de la Côte-Sainte-Catherine. At the bus stop, close to Avenue Claude-Champagne, pedestrians must cross the bike path in order to reach the bus. There is also a music college near the bus stop which creates dense pedestrian traffic. Moreover, the vertical alignment is not completely straight and it contains a steep slope going downhill. Data is collected using recorded videos by a camera installed at the site for more than two hours (158 minutes). Starting at 2:00 pm, the entire video covers peak hours of pedestrians traffic (in this case the end of class at the college). The video image frame is 1280x960 pixels and the frame rate of the camera is approximately 30 frames per second.
Relative coordinates of eight points were measured in the location to directly compute the homography matrix. Four main edges of the crosswalk in addition to four edges of pedestrian markings were selected based on their visibility on the video image frame such that the entire area of interest can be covered for coordinate transformation. Cyclists going up and down the hill were separated due to their different behavior. The conflict zones were considered one meter wider than crosswalks on each side.

Indicators Capability of Capturing Events

PETs were calculated for all interactions of interest for which classified road users entered and left the conflicting zone. The PET for users that both spatially and temporally co-exist in the area was set to be zero by definition (most severe interaction). Predicted PETs and TTCs were also computed for the same users that were evaluated for PETs. In order to identify “unsafe” events, a minimum threshold of 1.5 seconds was selected for minimum TTC (TTC_{\min}) based on the literature. Also, while minimum thresholds of PET in the literature vary between 1.5 to 3 seconds, an arbitrary threshold of 3 seconds was set for PET and minimum pPET ($pPET_{\min}$). Accordingly, all events with indicators less than the minimum thresholds were defined as unsafe and the ones above the minimum threshold as safe events. In total, 225 interactions were observed and investigated using the three selected indicators. Among important events, i.e. for which a PET can be computed, it was observed there were only a few cases that were covered by TTC and pPET. The results are presented in Table 1. Based on manual observations of the videos, it was observed that unsafe interactions identified by PET and pPET do not have a collision course. It was also observed that cyclists tend to maintain their speed in various situations and pedestrians adapt their speed, angle of movement and acceleration in cases where they are the offended users.
Table 1. Conflict indicators for users’ interactions

<table>
<thead>
<tr>
<th>Indicator</th>
<th>All Important Events</th>
<th>Common Important Events</th>
<th>Safe Events</th>
<th>Common Important Events</th>
<th>Safe Events</th>
<th>Common Important Events</th>
<th>Common Important Events</th>
<th>Common Important Events</th>
<th>Common Important Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>225</td>
<td>-</td>
<td>33</td>
<td>133</td>
<td>50</td>
<td>-</td>
<td>33</td>
<td>49</td>
<td>175</td>
<td>-</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TTC</td>
<td>33</td>
<td>33</td>
<td>-</td>
<td>17</td>
<td>33</td>
<td>-</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>pPET</td>
<td>133</td>
<td>133</td>
<td>17</td>
<td>-</td>
<td>131</td>
<td>49</td>
<td>17</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

The number of events with computable TTC reported in the table shows that the TTC did not capture many events, i.e. there were few collision courses at constant velocity between cyclists and pedestrians, and all events were safe (TTC_{min} superior to 1.5 s). pPET, however, can be computed for more interactions as it only requires the two predicted trajectories to cross. Although PET and pPET could both be compute for 133 important events, only 49 safe and 2 unsafe events were commonly reported by these two indicators. That means that safe and unsafe events reported by PET and pPET do not necessarily match. Figure 3 illustrates the distribution of all important events reported by PET and TTC_{min}.

Figure 3. Distribution of important events captured by PET and TTC_{min}; Thresholds for safe interactions are defined as PET ≤ 3 s and TTC_{min} ≤ 1.5 s

The PET distribution also shows the strength of the indicator to capture safe and unsafe events. While the TTC_{min} distribution does not show any unsafe events, it reports a high proportion of safe events. Considering the manual observations of interactions in videos, it seems that the opposite frequencies of the two distributions show that PET may be more suitable for interactions between cyclists and pedestrians. However, testing different motion prediction methods is necessary before drawing final conclusions.
Microscopic Behavior Analysis of Cyclists and Pedestrians
To evaluate the behavior of interacting users, microscopic behavior analysis was done based on speed and acceleration profiles for both offended and conflicting users. In order to identify yielding behavior or movement adaptation as well as evasive actions, speed magnitude and angle were plotted for both users during the whole passage of pedestrians in the conflicting zone. Acceleration magnitude was also selected to identify users’ reaction to the conflict situation. Several situations could not be taken into account because the speed data was not available for a sufficient amount of time, e.g. when the cyclist was detected and tracked only in the conflicting zone or because of noisy trajectories and grouping errors. In total, 17 cases of interaction situations in which cyclists were approaching pedestrians were analyzed in two hours of video; 13 cases out of 17 showed very similar patterns that can be seen in Figures 4 and 5.

Figure 4. Speed and acceleration profiles of pedestrians and cyclists going downhill in important events; cyclists are shown in continuous and pedestrians in crossed lines; *Ø is the angle of the velocity vector with the reference orientation along the cycle path
Figure 5. Speed and acceleration profiles of pedestrians and cyclists going uphill in important events; cyclists are shown in continuous and pedestrians in crossed lines; *Ø is the angle of the velocity vector with the reference orientation along the cycle path.

Pedestrians usually move more randomly than cyclists, which tend to keep their speed and orientation in the almost straight cycle path. Common interaction plots showed a significant fluctuation in acceleration of pedestrians which indicates large speed differences during short periods of time. Cyclists on the other hand, seemed to have less deviation in their speed and acceleration. Pedestrians, however, were observed to either reduce their speed (slow down) or to suddenly increase (run) to avoid collision with cyclists.
Figure 6. Speed and acceleration profiles of cyclists going downhill in the absence of pedestrians; Θ: the angle of the velocity vector with the reference orientation along the cycle path.

Evaluating changes in speed and acceleration along the conflicting zone would require pattern recognition techniques. However, there are various factors influencing cyclists’ behavior such as the presence of obstacles on the pavement surface (e.g. manholes) which are hard to track. Furthermore, there is an intersection downstream of the route which affects cyclists speed and acceleration. To compensate for the effects of these underlying factors, cyclists’ speeds and acceleration profiles in the absence of pedestrians were also plotted in Figures 6 and 7 to compare with the ones in interaction situations.
Figure 7. Speed and acceleration profiles of pedestrians and cyclists going uphill; *Ø is the angle of the velocity vector with the reference orientation along the cycle path

Figure 6 shows that in the absence of pedestrians, cyclists going downhill initially increase their speed until they reach the intersection with the local avenue. Their acceleration is almost zero before the intersection which indicates a constant speed. At the intersection however, they suddenly brake and reduce their speed with a significant change in acceleration. Although the cyclists’ maximum speeds are smaller in the presence of pedestrians, which may be expected, they tend to maintain their speed with almost no acceleration. Although the sample size is too small, it seemed that in most cases pedestrians were the first users that adapt themselves to cyclists. Due to the fact that almost all conflicts occurred for cyclists going downhill, their resistance to yield against pedestrians seems logical. However, the rare cases of uphill conflicts also illustrated the same observations.

To verify these observations, speed and acceleration changes were investigated quantitatively for pedestrians and cyclists going uphill or downhill. Users’ reactions (response) in interactions were explained by six different measures of speed and acceleration: the values at the pedestrian’s instant of entry in the conflicting zone and of departure from it, the 85th and 15th percentile of speed and acceleration over this interval (during the passage of the pedestrian into the conflicting zone), the difference between the maximum and minimum values and the mean of the measures. Results are presented in tables 2 and 3. Reported numbers support manual observations from videos and plotted figures of speeds and acceleration. Cyclists have high speeds whether pedestrians are present or not. In both situations, speed difference of cyclists and accordingly their acceleration is relatively small during the associated time interval of pedestrians’ passage. Pedestrians on the other hand, have large numbers of
speed difference (relative to their initial speed) and acceleration during their passage which indicates their adaptation to cyclists’ high speed.

Table 2. Speed and acceleration measurements for cyclists in the presence and absence of a pedestrian

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Number of Observations</th>
<th>Pedestrian * Arrival Instant</th>
<th>Pedestrian ** Departure Instant</th>
<th>85th Percentile (Maximum)</th>
<th>15th Percentile (Minimum)</th>
<th>Difference ***</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclists Heading Downhill Without Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>402</td>
<td>8.5</td>
<td>11.8</td>
<td>10.9</td>
<td>8.4</td>
<td>2.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Acceleration (m/s²)</td>
<td>402</td>
<td>1.0</td>
<td>1.2</td>
<td>1.0</td>
<td>0.9</td>
<td>0.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Interacting Cyclists with Pedestrians Heading Downhill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>120</td>
<td>6.7</td>
<td>8.2</td>
<td>8.2</td>
<td>6.7</td>
<td>1.5</td>
<td>7.2</td>
</tr>
<tr>
<td>Acceleration (m/s²)</td>
<td>120</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Cyclists Heading Uphill Without Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>122</td>
<td>4.3</td>
<td>3.6</td>
<td>4.4</td>
<td>3.5</td>
<td>0.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Acceleration (m/s²)</td>
<td>122</td>
<td>0.6</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Interacting Cyclists with Pedestrians Heading Uphill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>51</td>
<td>2.1</td>
<td>2.4</td>
<td>2.4</td>
<td>1.5</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Acceleration (m/s²)</td>
<td>51</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

* and ** For cyclists in the absence of pedestrians, these instants are associated to the average positions of pedestrians arrival and departure in cases of their presence.

*** Difference between 85th and 15th percentile values (maximum and minimum)

Table 3. Speed and acceleration measurements for pedestrians interacting with cyclists

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Number of Observations</th>
<th>Pedestrian * Arrival Instant</th>
<th>Pedestrian ** Departure Instant</th>
<th>85th Percentile (Maximum)</th>
<th>15th Percentile (Minimum)</th>
<th>Difference ***</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interacting Pedestrians with Cyclists Heading Downhill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>21</td>
<td>2.5</td>
<td>2.3</td>
<td>4.1</td>
<td>1.7</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Acceleration (m/s²)</td>
<td>21</td>
<td>2.1</td>
<td>2.2</td>
<td>3.9</td>
<td>1.4</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Interacting Pedestrians with Cyclists Heading Uphill</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed (m/s)</td>
<td>21</td>
<td>2.5</td>
<td>2.3</td>
<td>4.1</td>
<td>1.7</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Acceleration (m/s²)</td>
<td>21</td>
<td>2.1</td>
<td>2.2</td>
<td>3.9</td>
<td>1.4</td>
<td>2.4</td>
<td>2.0</td>
</tr>
</tbody>
</table>

* and ** For cyclists in the absence of pedestrians, these instants are associated to the average positions of pedestrians arrival and departure in cases of their presence.

*** Difference between 85th and 15th percentile values (maximum and minimum)
Yielding of pedestrians against cyclists was further investigated by studying the speed distributions of conflicting cyclists at instants when pedestrians started to step in the crosswalk (Figure 8). Considering that speed is an important contributor to the severity of collisions, it is highly related to the pedestrians’ perception of safety and can thus affect the yielding-adaptation behavior. The statistics reported in figure 8 show high speeds for downhill and uphill cyclists at the moment of pedestrian crossing which may explain why the cyclists are reluctant to yield to crossing pedestrians.

CONCLUSIONS

This study aimed to automatically evaluate the microscopic interactions of cyclists and pedestrians at bus stops along segregated bike paths. Despite the movement complexities of cyclists and pedestrians, the video analysis could appropriately detect and track most of them. The user classification criteria were capable of classifying users with acceptable errors. However, due to random behavior of road users, specifically pedestrians, future work can be dedicated to investigate more techniques for user classification.

A wide polygon of one meter margins around the crosswalk was selected as the conflicting zone in which situations of proximity between users may be severe interactions. Three conflict indicators were investigated to capture important events: PET, TTC and pPET. Although some bias was observed due to over-segmentation or multiple tracking for an object which created erroneous indicator measurements, it was concluded that a combination of PET, predicted PET and TTC can almost cover all the interactions, i.e., at least one of these indicators could be computed for all interactions of interest. Using arbitrary thresholds based on the literature, interactions captured by TTC are all identified as safe events, while the PET and pPET indicators allowed observing unsafe events.

A microscopic evaluation of speed and acceleration were applied to further investigate yielding-adaptation behavior of vulnerable users. The speeds of cyclists were compared whether they were in the presence or absence of pedestrians. Speed and acceleration profiles, as well as specific measurements and

Figure 8. Speed distribution of cyclists at the instant of the pedestrians’ entry into the conflicting zone

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Number of Observations</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>85th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed (m/s)</td>
<td>112</td>
<td>4.6</td>
<td>2.0</td>
<td>7.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Number of Observations</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>85th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed (m/s)</td>
<td>34</td>
<td>5.3</td>
<td>1.8</td>
<td>7.5</td>
</tr>
</tbody>
</table>
statistics showed that almost all cyclists maintain their speed and acceleration. Pedestrians, however, take evasive actions (reducing speed and acceleration) and adapt their movement to the approaching cyclists. Future work is needed to validate these observations on longer observations periods as well as on other sites. The computation of other indicators and the use of more suitable motion prediction methods may yield more measurements. Another angle will be to investigate the compliance of pedestrians with the crosswalk and whether it is related to more or less dangerous situations.

REFERENCES

(5) Balsas, Carlos JL. Sustainable transportation planning on college campuses. Transport Policy, 10.1,2003, pp. 35-49.

(20) Ismail, K., Sayed, T., Saunier, N., and Lim, C. Automated analysis of pedestrian–vehicle conflicts using video data. In Transportation Research Record: Journal of the Transportation Research Board 2140.1, 2009, pp. 44-54.

(21) Laureshyn, A. Application of automated video analysis to road user behavior, No. 253, 2010.

