A Canadian Perspective on Safe Signalized Intersections

Which Features are Beneficial to Operate Safe Signalized Intersections?

Nicolas Saunier
November 8th 2022

Outline

Guidance and legal frameworks

Practice

Evidence

Perspectives

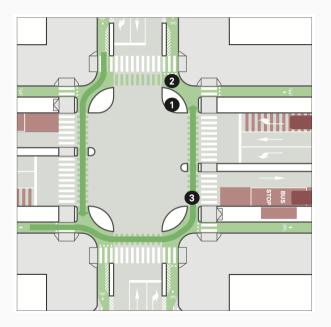
Types of cycling facilities in Quebec (North America?)

- Dedicated roads (shared-lane markings)
- Bike lanes
- Cycle track / path (physically separated)
- Cycle streets
- Off-road cycle path (generally shared use with pedestrians)

Outline

Guidance and legal frameworks

Practice


Evidence

Perspectives

Guidance

Intersection design elements from the Global Street Design Guide [1]

- Advanced stop bars or cycle boxes
- Two-stage turn queue boxes
- Corner refuge islands
 - · Protected cycle facilities at intersections
- Cycle signals
 - Partially or fully protected movement through leading interval or exclusive phase
- Filtered permeability: physical barriers at some intersections to divert motorized traffic

Protected cycle facilities at intersections

- 1. Corner refuge island
- 2. Forward stop line
- Setback crossing by extending the curb

Design Guidance

- Visibility and sight distance
 At uncontrolled locations where volume or speed present safety concerns,
 add traffic controls or traffic calming devices on the intersection
 approach [1]
- Speed management
- Traffic calming, e.g., corner radii and diverters
- Signal progressions
 When set to cycle- and transit-friendly speeds of 20–25 km/h, signal progressions can remove much of the incentive to speed [1]

Legal Framework in Canada

Legal Framework in Canada

- Provinces are responsible for transport, inc. road design and traffic control devices
 - rules of the road (law)
 - the Ministry of Transportation maintains the norms for road infrastructure that must be applied by road authorities, inc. cities
- Complementary implementation guides by cities, e.g., "guide de conception des feux en présence d'aménagements cyclables"

Legal Framework in Quebec

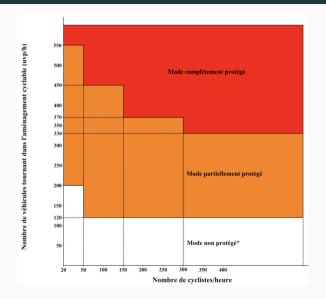
Legal Framework in Quebec

- The word cyclist appears once in the provincial norms on intersection design
- More in the cycling facility road design norm: emphasis on visibility (removing parking close to intersection), warning about contraflows, cycle tracks should be brought back along the roadway next to the intersection (need for safety study otherwise)
- Traffic lights
 - pedestrian and cyclist traffic is a justification for 3+ phases
 - · cyclist lights are "justified when an exclusive phase is necessary for cyclists"
 - adaptation of traffic light warrants for pedestrians to change control type (change to traffic light control)

Outline

Guidance and legal frameworks

Practice


Evidence

Perspectives

Montreal Guide for Traffic Light Design (2016)

 Minimum number of bike crashes with turning vehicles

Montreal Guide for Traffic Light Design (2016)

 Number of potential cyclist-vehicle conflicts based on conflict points and volumes

Other Adaptations

- Clearing time computed based on cyclist speed, esp. for large intersections (>20 m)
- Adjusted warrants from the ministry to change control type
 - · bike crashes
 - cyclist volume and number of gaps in vehicular traffic
- Toronto: issues with right turn on red

Outline

Guidance and legal frameworks

Practice

Evidence

Perspectives

Research from Montreal

Joint research with

- · Luis Miranda-Moreno, McGill University
 - Sohail Zangenehpour, Joshua Stipancic, Bismarck Ledezma-Navarro, Paul St-Aubin
- · Marie-Soleil Cloutier, INRS

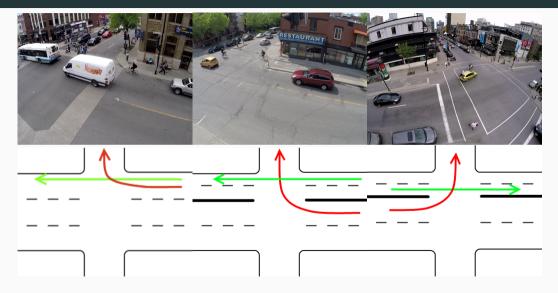
Examples: guide for bike lights, conversion of 2-way stop control to all-way stop control (2021)

Bicycle Boxes (2014)

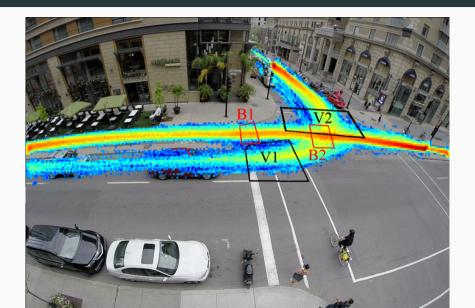
Without bicycle box (before) With bicycle box (after)

Bicycle Boxes (2014)

Fl4i-bl	Violation No.			No Stop	Before C	Crossing	Dangerous Violation		
Explanatory variables	Coef.	p-val.	Elas.*	Coef.	p-val.	Elas.*	Coef.	p-val.	Elas.*
Constant	-0.987	0.00	-	-2.045	0.00	-	-3.941	0.00	-
Male	0.569	0.00	14 %	0.576	0.00	10 %	0.844	0.00	4 %
Young Adult	0.803	0.00	19 %	0.851	0.00	12 %	1.161	0.00	4 %
Wear Helmet	-0.343	0.00	-9 %	-0.290	0.01	-5 %	-0.560	0.01	-2 %
Group Arrival	-0.337	0.00	-8 %	-0.742	0.00	-12 %	-0.839	0.00	-4 %
Bicycle Box	0.211	0.01	5 %	0.273	0.01	5 %		-	-
Number of observations		2291			2291			2291	
Percentage of positive obs.	47 %			24 %			6 %		
Log-likelihood	-1530.32		-1198.82			-482.99			
Pseudo R ²	0.034			0.046			0.054		


 $^{^*}$ Elasticity for discrete change of dummy variable from 0 to 1

Bicycle Boxes (2014)


	Interaction Type 1						Interaction Type 2						
Explanatory Variables Intera		action (PET < 5s)		Dangerous Interaction (PET < 1.5s)			Interaction (PET < 5s)			Dangerous Interaction (PET < 1.5s)			
	Coef.	p-val.	Elas.	Coef.	p-val.	Elas.	Coef.	p-val.	Elas.	Coef.	p-val.	Elas.	
Constant	-0.559	0.00	-	-1.954	0.00	-	-2.994	0.00	-	-4.354	0.00	-	
Bicycle Flow during 30s before	0.423	0.00	7.7 %	0.434	0.00	2.1 %	-	-	-	-	-	-	
Vehicle Flow 1 during 30s before	0.091	0.00	1.6 %	0.040	0.04	0.2 %	0.063	0.00	0.4 %	-	-	-	
Vehicle Flow 2 during 30s before	-0.086	0.00	-1.6 %	-0.082	0.01	-0.4 %	0.117	0.00	0.8 %	0.097	0.00	0.1 %	
Presence of Bicycle Box	-0.739	0.00	-14 %*	-1.226	0.00	-7 %*	-0.726	0.00	-5 %*	-2.050	0.00	-2 %*	
Observations	1054					1054							
Percentage of positive obs.	27.6 %			7.5 %		9.8 %		1.3 %					
Log-likelihood	-544.00			-251.48			-299.85			-66.44			
Pseudo R ²	0.133 0.109				0.117 0.110								

 $^{^{\}ast}$ Elasticity for discrete change of dummy variable from 0 to 1

Cycle Tracks: Turning Vehicles and Cyclists (2015)

Cycle Tracks: Turning Vehicles and Cyclists (2015)

Cycle Tracks: Turning Vehicles and Cyclists (2015)

	Model I. Cycle track on the right vs. no cycle track			Cycle t	Model II. rack on tl o cycle tra		Model III. Cycle track on the right vs. cycle track on the left		
	Coef.	Std. Err.	Sig.	Coef.	Std. Err.	Sig.	Coef.	Std. Err.	Sig.
Cycle Track on Right	0.395	0.181	0.03	1	-	-	-	-	-
Cycle Track on Left	-	-	-	No	t Significar	nt	-0.513	0.131	0.00
Bicycle Flow for 5s before to 5s after	No	ot Significa	nt	0.088	0.038	0.02	0.066	0.034	0.05
Turning-Vehicle Flow for 5s before to 5s after	-2.771	0.132	0.00	-3.265	0.090	0.00	-3.131	0.080	0.00
Number of Lanes on the Main Road	-0.151	0.078	0.05	No	t Significar	nt	N	ot Significa	nt
Number of Lanes on the Turning Road	No	ot Significa	nt	0.324	0.146	0.03	0.457	0.178	0.01
Cut-off 1	-6.599	0.353	0.00	-7.372	0.301	0.00	-7.621	0.323	0.00
Cut-off 2	-4.233	0.273	0.00	-3.807	0.223	0.00	-4.125	0.265	0.00
Cut-off 3	-3.150	0.256	0.00	-2.102	0.211	0.00	-2.479	0.258	0.00
Number of Observations		2880			4803			6567	
Log likelihood		-804	•	-1876			-2330		

Association of Gender with Interaction Safety (2016)

		β_1			β_2		
)	$eX + \beta sw + \varepsilon$				
Explanatory variables	Parameter	z stat	p value	Parameter	z stat	p value	
Bike Speed	-	-	-	0.0272	2.31	0.021	
Helmet	-	-	-	-	-	-	
Vehicle Speed	-	-	-	0.0250	2.38	0.017	
Truck/Van	-	-	-	-	-	-	
Platoon Leader	-	-	-	0.2395	1.63	0.104	
Red	-0.7713	-4.99	0.000	-	-	-	
Bike First			-	-	-	-	
Pedestrian	-	-	-	-	-	-	
Stanley	-0.3774	-2.56	0.010	-	-	-	
Peel	-	-	-	-	-	-	
Mackay	-	-	-	-0.4946	-2.41	0.016	
Metcalfe	-0.2384	-1.75	0.080	-	-	-	
Denis	-	-	-	-	-	-	
Union	-0.8953	-2.21	0.027	0.6657	1.35	0.178	
		β_3			β_3		
Male	-1.1703	-3.79	0.000	-1.1703	-3.79	0.000	
Tau 1			-0.20	07			
Tau 2			1.04	55			
Number of cases	-		151	4			
Log likelihood at convergence			-1488	.69			
Log likelihood for constants- only model			-1522	.09			
Pseudo R ²			0.02	19			

Outline

Guidance and legal frameworks

Practice

Evidence

Perspectives

Conclusion

• There is a convergence: good design is easy to find and rather obvious, e.g., based on the Global Street Design Guide [1]

Conclusion

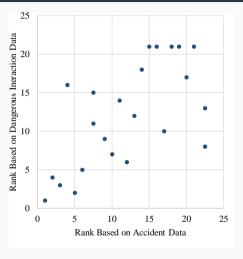
- There is a convergence: good design is easy to find and rather obvious, e.g., based on the Global Street Design Guide [1]
- There is a lack of evidence on specific treatments in different contexts

Conclusion

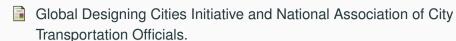
- There is a convergence: good design is easy to find and rather obvious, e.g., based on the Global Street Design Guide [1]
- There is a lack of evidence on specific treatments in different contexts
- What to do if there is not enough space?

There is a philosophical question with lights and other traffic control devices: are they needed? Are spaces with little to no traffic control devices (naked streets) safer? How to encourage awareness and safe interacting behavior?

There is a philosophical question with lights and other traffic control devices: are they needed? Are spaces with little to no traffic control devices (naked streets) safer? How to encourage awareness and safe interacting behavior?



nicolas.saunier@polymtl.ca



Questions?

Correlation with Accidents

Spearman Rank Correlation of 0.64

Global street design guide.

Island Press, 2016.