The Driverless Future

Annual CEGSS Conference

Nicolas Saunier
nicolas.saunier@polymtl.ca
May 9th 2018
Outline

Introduction

Science-Fiction?

Consequences

Conclusion
Outline

Introduction

Science-Fiction?

Consequences

Conclusion
Road crashes are one of the most important public health issues and may be the one that gets the least attention.
Road Safety

- Road crashes are one of the most important public health issues and may be the one that gets the least attention.
- Around 95% of crashes are associated with some kind of human factor.
Road Safety

• Road crashes are one of the most important public health issues and may be the one that gets the least attention
• Around 95 % of crashes are associated with some kind of human factor
• Therefore, the only way to realize Vision Zero is to remove the driver from the loop, to build driverless vehicles
Some Terms and Definitions

- Autonomous vehicles ≈ driverless vehicles ≈ completely automated vehicles
Some Terms and Definitions

- **Autonomous vehicles** ≈ **driverless vehicles** ≈ **completely automated vehicles**
- **Autonomous vehicles** \neq **connected vehicles**
Automation Levels (SAE)

<table>
<thead>
<tr>
<th>SAE Level</th>
<th>Name</th>
<th>Narrative Definition</th>
<th>Execution of Steering and Acceleration/Deceleration</th>
<th>Monitoring of Driving Environment</th>
<th>Fallback Performance of Dynamic Driving Task</th>
<th>System Capability (Driving Modes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Automation</td>
<td>the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Human driver</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>Driver Assistance</td>
<td>the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task</td>
<td>Human driver and system</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>2</td>
<td>Partial Automation</td>
<td>the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task</td>
<td>System</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td></td>
<td>Automated driving system ("system") monitors the driving environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Conditional Automation</td>
<td>the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene</td>
<td>System</td>
<td>System</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>4</td>
<td>High Automation</td>
<td>the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>5</td>
<td>Full Automation</td>
<td>the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>All driving modes</td>
</tr>
</tbody>
</table>
Outline

Introduction

Science-Fiction?

Consequences

Conclusion
Science-Fiction?
Science-Fiction?

Volvo develops the 'no death' car: Vehicles which drive themselves and are totally crashproof could be on British roads in eight years

- Vehicle will be fitted with sensors that can detect potential collisions and take action
- Firm claims 'nobody will be killed or injured in a new Volvo by 2020'

By RAY MASSEY, TRANSPORT EDITOR
PUBLISHED: 17:58 GMT, 4 December 2013 | UPDATED: 07:46 GMT, 5 December 2013

Car giant Volvo is developing 'no death' cars that drive themselves and are impossible to crash - ready for launch in showrooms within eight years.

The computerised vehicles will be fitted with high-tech sensors and will 'refuse to be steered' into other objects.

Volvo says they will be on sale to customers by 2020, but that some of the life-saving technology will be incorporated into its vehicles even earlier – from 2014 – it says.

Scroll down for video
Science-Fiction?

- Level 2 and 3 vehicles (on highways) **exist**: Infiniti Q50, Volvo, Tesla, Audi A8
Science-Fiction?

- Level 2 and 3 vehicles (on highways) exist: Infiniti Q50, Volvo, Tesla, Audi A8
- Announcements for 2020: GM, Volvo, Ford, Google Waymo, Tesla, Uber, etc.
Science-Fiction?
Science-Fiction?
Why is it going to work this time?
“We were promised flying cars”

- No need for new dedicated infrastructure
- **Progressive** introduction of technologies: (advanced) driver assistance systems (ADAS)
First Paradigm Change in Transportation for a Century
First Paradigm Change in Transportation for a Century
Some Consequences

1. Safety
Some Consequences

1. Safety
2. Mobility gains for children and people with disabilities
Some Consequences

1. Safety
2. Mobility gains for children and people with disabilities
3. Capacity: only 10-20 % of a highway road surface is currently occupied at “capacity”
Some Consequences

1. Safety
2. Mobility gains for children and people with disabilities
3. Capacity: only 10-20% of a highway road surface is currently occupied at “capacity”
4. Increase in the number of trips and traveled distances
Some Consequences

1. Safety
2. Mobility gains for children and people with disabilities
3. Capacity: only 10-20 % of a highway road surface is currently occupied at “capacity”
4. Increase in the number of trips and traveled distances
 • travel time becomes productive
Some Consequences

1. Safety
2. Mobility gains for children and people with disabilities
3. Capacity: only 10-20% of a highway road surface is currently occupied at “capacity”
4. Increase in the number of trips and traveled distances
 - travel time becomes productive
5. Decrease and “disappearance” of parking spaces, redesign of urban spaces
Some Consequences

1. Safety
2. Mobility gains for children and people with disabilities
3. Capacity: only 10-20 % of a highway road surface is currently occupied at “capacity”
4. Increase in the number of trips and traveled distances
 • travel time becomes productive
5. Decrease and “disappearance” of parking spaces, redesign of urban spaces
6. Jobs, jobs, jobs
Mobility Scenarios

- “Business as usual”: individual vehicle ownership

Parking management becomes the management of curb space (pick-up and drop-in)

Case study of Lisbon and Helsinki: only 10% or 7% of the current fleet is needed to serve the existing demand
Mobility Scenarios

- “Business as usual”: individual vehicle ownership
 - with the addition of trips with 0 passenger (zombie vehicles)
Mobility Scenarios

- “Business as usual”: individual vehicle ownership
 - with the addition of trips with 0 passenger (zombie vehicles)
- Electric scenario: a little better
Mobility Scenarios

- “Business as usual”: individual vehicle ownership
 - with the addition of trips with 0 passenger (zombie vehicles)

- Electric scenario: a little better

- Shared (and electric) scenario: mobility as a service
Mobility Scenarios

- "Business as usual": individual vehicle ownership
 - with the addition of trips with 0 passenger (zombie vehicles)
- Electric scenario: a little better
- Shared (and electric) scenario: mobility as a service
 - case study of Lisbon and Helsinki: only 10% or 7% of the current fleet is needed to serve the existing demand
Mobility Scenarios

- “Business as usual”: individual vehicle ownership
 - with the addition of trips with 0 passenger (zombie vehicles)
- Electric scenario: a little better
- Shared (and electric) scenario: mobility as a service
 - case study of Lisbon and Helsinki: only 10% or 7% of the current fleet is needed to serve the existing demand
- Parking management becomes the management of curb space (pick-up and drop-in)
Unavoidable? Responsible Choice?

- Technology is not neutral, it is only a means to an end
Unavoidable? Responsible Choice?

- Technology is not neutral, it is only a means to an end
- Undeniable benefits: the road safety improvements are sufficient in themselves to deploy such a technology
Unavoidable? Responsible Choice?

- Technology is not neutral, it is only a means to an end
- Undeniable benefits: the road safety improvements are sufficient in themselves to deploy such a technology
 - the current alternative causes 1.2 million fatalities and more than 50 million injuries per year in the world
Unavoidable? Responsible Choice?

- Technology is not neutral, it is only a means to an end
- Undeniable benefits: the road safety improvements are sufficient in themselves to deploy such a technology
 - the current alternative causes 1.2 million fatalities and more than 50 million injuries per year in the world
- There are risks to repeat history and make society even more car-dependent
Proactive Discussion

The time is now to anticipate and develop this technology in the best possible way

- to meet the mobility needs while minimizing negative impacts
Proactive Discussion

The time is **now** to anticipate and develop this technology in the best possible way

- to meet the mobility needs while minimizing negative impacts
- to take the opportunities to **rethink the cities** and our life styles
Proactive Discussion

The time is now to anticipate and develop this technology in the best possible way

- to meet the mobility needs while minimizing negative impacts
- to take the opportunities to rethink the cities and our life styles
- to manage the complex and potentially chaotic transition
Eric Schmidt, Google CEO, said in 2010

“**It’s amazing to me that we let humans drive cars. It’s a bug that cars were invented before computers.”**
• Weather conditions and climate
Défis

- Weather conditions and climate
- Reliability of the system, technical development (cooperation, vehicle-to-vehicle and vehicle-to-infrastructure communications)
Défis

• Weather conditions and climate
• Reliability of the system, technical development (cooperation, vehicle-to-vehicle and vehicle-to-infrastructure communications)
 • cybersecurity
• Homologation
• Legal framework and insurances
• Acceptability of the technology and ethics
• Transition period with heterogeneous traffic of vehicles with various levels of automation
• Interactions with active modes of transportation
• Public transit and inter-city transportation
Défis

- Weather conditions and climate
- Reliability of the system, technical development (cooperation, vehicle-to-vehicle and vehicle-to-infrastructure communications)
 - cybersecurity
 - homologation
- Legal framework and insurances
- Acceptability of the technology and ethics
- Personal data
- Transition period with heterogeneous traffic of vehicles with various levels of automation
- Interactions with active modes of transportation
- Public transit and inter-city transportation
Défis

- Weather conditions and climate
- Reliability of the system, technical development (cooperation, vehicle-to-vehicle and vehicle-to-infrastructure communications)
 - cybersecurity
 - homologation
- Legal framework and insurances

Acceptability of the technology and ethics

Personal data

Transition period with heterogeneous traffic of vehicles with various levels of automation

Interactions with active modes of transportation

Public transit and inter-city transportation
Défis

- Weather conditions and climate
- Reliability of the system, technical development (cooperation, vehicle-to-vehicle and vehicle-to-infrastructure communications)
 - cybersecurity
 - homologation
- Legal framework and insurances
- Acceptability of the technology and ethics
Défis

- Weather conditions and climate
- Reliability of the system, technical development (cooperation, vehicle-to-vehicle and vehicle-to-infrastructure communications)
 - cybersecurity
 - homologation
- Legal framework and insurances
- **Acceptability** of the technology and ethics
 - personal data

Transition period with heterogeneous traffic of vehicles with various levels of automation

Interactions with active modes of transportation

Public transit and inter-city transportation
Défis

- Weather conditions and climate
- Reliability of the system, technical development (cooperation, vehicle-to-vehicle and vehicle-to-infrastructure communications)
 - cybersecurity
 - homologation
- Legal framework and insurances
- **Acceptability** of the technologie and ethics
 - personal data
- **Transition** period with heterogeneous traffic of vehicles with various levels of automation
Défis

- Weather conditions and climate
- Reliability of the system, technical development (cooperation, vehicle-to-vehicle and vehicle-to-infrastructure communications)
 - cybersecurity
 - homologation
- Legal framework and insurances
- Acceptability of the technology and ethics
 - personal data
- Transition period with heterogeneous traffic of vehicles with various levels of automation
- Interactions with active modes of transportation
Défis

• Weather conditions and climate
• Reliability of the system, technical development (cooperation, vehicle-to-vehicle and vehicle-to-infrastructure communications)
 • cybersecurity
 • homologation
• Legal framework and insurances
• Acceptability of the technology and ethics
 • personal data
• Transition period with heterogeneous traffic of vehicles with various levels of automation
• Interactions with active modes of transportation
• Public transit and inter-city transportation