Levels of Automation

Nicolas Saunier
Associate Professor
Department of Civil, Geological and Mining Engineering

June 18th 2017
Let's see how well the Active Lane Control works on the new Infiniti Q50S
Volvo develops the 'no death' car: Vehicles which drive themselves and are totally crashproof could be on British roads in eight years

- Vehicle will be fitted with sensors that can detect potential collisions and take action
- Firm claims 'nobody will be killed or injured in a new Volvo by 2020'

Car giant Volvo is developing 'no death' cars that drive themselves and are impossible to crash – ready for launch in showrooms within eight years.

The computerised vehicles will be fitted with high-tech sensors and will refuse to be steered into other objects.

Volvo says they will be on sale to customers by 2020, but that some of the life-saving technology will be incorporated into its vehicles even earlier – from 2014 – it says.

Scroll down for video.
Science Fiction?
Connected Vehicles?
Levels of Automation

<table>
<thead>
<tr>
<th>SAE level</th>
<th>Name</th>
<th>Narrative Definition</th>
<th>Execution of Steering and Acceleration/Deceleration</th>
<th>Monitoring of Driving Environment</th>
<th>Fallback Performance of Dynamic Driving Task</th>
<th>System Capability (Driving Modes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Automation</td>
<td>the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Human driver</td>
<td>n/a</td>
</tr>
<tr>
<td>1</td>
<td>Driver Assistance</td>
<td>the driving mode–specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task</td>
<td>Human driver and system</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>2</td>
<td>Partial Automation</td>
<td></td>
<td>System</td>
<td>Human driver</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td></td>
<td>Intelligent Cruise Control + Active Lane Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Conditional Automation</td>
<td></td>
<td>System</td>
<td>System</td>
<td>Human driver</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>4</td>
<td>High Automation</td>
<td>the driving mode–specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene</td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>Some driving modes</td>
</tr>
<tr>
<td>5</td>
<td>Full Automation</td>
<td></td>
<td>System</td>
<td>System</td>
<td>System</td>
<td>All driving modes</td>
</tr>
</tbody>
</table>

Standard J3016
Copyright © 2014 SAE International
Some Challenges

• Weather / Winter
• Road construction
• Legal framework
• Insurance
• Interactions with other users
Some Impacts

1. Safety
2. Road capacity
3. Increase of vehicle miles traveled
 - mobility for people who cannot drive
4. Urban planning: parking, urban sprawl
5. Car ownership: shared robo-taxis, aka Uber 2.0?
6. Jobs, jobs, jobs
Conclusion

• Remember the current alternative...
 • every year: 1.2 million dead, 50 million injured
 • history will judge us harshly if we slow down the adoption of life-saving technology for the wrong reasons

• The adoption and use of disruptive technologies are difficult (impossible?) to predict
nicolas.saunier@polymtl.ca

THANK YOU!