Automated Road Safety Analysis
Lund Universitet, Trafik och Väg

Nicolas Saunier
nicolas.saunier@polymtl.ca

February 23rd 2015
Outline

1. Introduction
2. Past and Current Research
3. Perspectives
My Journey to Transportation

My Journey to Transportation

2. 2001-2005: Ph.D. in Computer Science from Telecom ParisTech, working at INRETS on “Influence of traffic control in a signalized intersection on the risk of road users; Stream-based learning of safety indicators through data selection”
My Journey to Transportation

2. 2001-2005: Ph.D. in Computer Science from Telecom ParisTech, working at INRETS on “Influence of traffic control in a signalized intersection on the risk of road users; Stream-based learning of safety indicators through data selection”
 - read Åse Svensson’s PhD thesis
My Journey to Transportation

2. 2001-2005: Ph.D. in Computer Science from Telecom ParisTech, working at INRETS on “Influence of traffic control in a signalized intersection on the risk of road users; Stream-based learning of safety indicators through data selection”
 - read Åse Svensson’s PhD thesis

3. 2005-2009: Postdoc at UBC with Prof. Tarek Sayed, developing video analysis for surrogate safety analysis
My Journey to Transportation

2. 2001-2005: Ph.D. in Computer Science from Telecom ParisTech, working at INRETS on “Influence of traffic control in a signalized intersection on the risk of road users; Stream-based learning of safety indicators through data selection”
 - read Åse Svensson’s PhD thesis

3. 2005-2009: Postdoc at UBC with Prof. Tarek Sayed, developing video analysis for surrogate safety analysis

4. 2009-: Professor in Polytechnique Montréal
Outline

1. Introduction
2. Past and Current Research
3. Perspectives
Surrogate Measures of Safety

- Looking for measures of safety that do not require to wait for accidents to happen
- Hypothesis [Svensson and Hydén, 2006]: in the safety hierarchy, all events have a relationship to accidents (safety) that may be of different nature
- Automation using video sensors and computer vision
 - cheap hardware, open source software
The Particularities of our Approach

- Automated video analysis
The Particularities of our Approach

- Automated video analysis
- Develop an automated, robust and generic probabilistic framework for surrogate safety analysis

N. Saunier, Polytechnique Montréal
The Particularities of our Approach

- Automated video analysis
- Develop an automated, robust and generic probabilistic framework for surrogate safety analysis
 - for all types of road users and road environments
The Particularities of our Approach

- Automated video analysis
- Develop an **automated, robust and generic** probabilistic framework for surrogate safety analysis
 - for all types of road users and road environments
 - generalize the concept of collision course: importance of motion prediction methods
The Particularities of our Approach

- Automated video analysis
- Develop an automated, robust and generic probabilistic framework for surrogate safety analysis
 - for all types of road users and road environments
 - generalize the concept of collision course: importance of motion prediction methods
 - improve existing indicator(s) before inventing new ones
Automated video analysis

Develop an **automated, robust and generic** probabilistic framework for surrogate safety analysis
- for **all types** of road users and road environments
- generalize the concept of **collision course**: importance of **motion prediction** methods
- improve existing indicator(s) before inventing new ones

Better understand **collision processes** and the similarities between interactions with and without a collision for safety estimation
Step 1: Video Data Collection
Step 2: Data Preparation

In particular, camera calibration: homography and distortion (if any)
Step 2: Data Preparation

In particular, camera calibration: homography and distortion (if any)
Step 3: Moving Road User Detection, Tracking and Classification
Step 3: Moving Road User Detection, Tracking and Classification
Step 3: Moving Road User Detection, Tracking and Classification
Step 4: Motion Prediction

- Sample size: 292.0
- Greatest density: 15.0
- Lane: 1
- $S = [3.34, 8.90]$ m
- Speed: $[0.3, 0.4]$ m/s
- DeltaTime: 60 frames
Step 5: Safety Indicators
Step 5: Safety Indicators

Using of a finite set of predicted trajectories, enumerate the collision points CP_n and the crossing zones CZ_m. Safety indicators can then be computed:

$$P(\text{Collision}(U_i, U_j)) = \sum_n P(\text{Collision}(CP_n))$$

$$TTC(U_i, U_j, t_0) = \frac{\sum_n P(\text{Collision}(CP_n)) \cdot t_n}{P(\text{Collision}(U_i, U_j))}$$

$$pPET(U_i, U_j, t_0) = \frac{\sum_m P(\text{Reaching}(CZ_m)) \cdot |t_{i,m} - t_{j,m}|}{\sum_m P(\text{Reaching}(CZ_m))}$$
Step 5: Safety Indicators

Past and Current Research

N. Saunier, Polytechnique Montréal

February 23rd 2015
Step 5: Safety Indicators

![Graph showing expected evolution, motion pattern prediction, normal adaptation prediction, and constant velocity prediction of time-to-collision (TTC) over time.](image-url)
Step 6: Interpretation

- **a)**
 - Probability vs. TTC
 - "High risk" and "Low risk" zones
 - Observed collisions

- **b)**
 - Cumulative Probability vs. TTC
 - Safety gain

- **c)**
 - Probability vs. TTC
 - "High risk", "Medium risk", and "Low risk" zones
 - Observed collisions

- **d)**
 - Cumulative Probability vs. TTC
 - Ambiguous conditions
Step 6: Interpretation

Maximum Collision Probability

Minimum TTC
Step 6: Interpretation

Histogram of Before-and-After TTC

- TTC Before
- TTC After

Histogram of Before-and-After DST

- DST Before
- DST After

Histogram of Before-and-After PET

- PET Before
- PET After

Histogram of Before-and-After GT

- GT Before
- GT After

N. Saunier, Polytechnique Montréal
Step 6: Interpretation

Traffic Conflicts
Step 6: Interpretation

Cumulative Observations (%)

TTC observations (seconds)

N. Saunier, Polytechnique Montréal

February 23rd 2015 13 / 18
Step 6: Interpretation

<table>
<thead>
<tr>
<th>Model I. Cycle track on the right vs. no cycle track</th>
<th>Number of Observations = 2880</th>
<th>Log likelihood = -1420</th>
<th>Pseudo R² = 0.264</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Track on Right</td>
<td>Coef.</td>
<td>Std. Err.</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>0.4303</td>
<td>0.1297</td>
<td>3.32</td>
</tr>
<tr>
<td>Turning-Vehicle Flow for 15s before to 15s after</td>
<td>-1.4089</td>
<td>0.0551</td>
<td>-25.56</td>
</tr>
<tr>
<td>Number of Lane on the Main Road</td>
<td>-0.2354</td>
<td>0.0654</td>
<td>-3.60</td>
</tr>
<tr>
<td>Bus Stop</td>
<td>0.2658</td>
<td>0.1336</td>
<td>1.99</td>
</tr>
<tr>
<td>Cut-off 1</td>
<td>-6.6884</td>
<td>0.2836</td>
<td>-25.56</td>
</tr>
<tr>
<td>Cut-off 2</td>
<td>-3.8927</td>
<td>0.1968</td>
<td>-20.74</td>
</tr>
<tr>
<td>Cut-off 3</td>
<td>-2.5246</td>
<td>0.1812</td>
<td>-1.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model II. Cycle track on the left vs. no cycle track</th>
<th>Number of Observations = 4803</th>
<th>Log likelihood = -3241</th>
<th>Pseudo R² = 0.288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Track on Left</td>
<td>Coef.</td>
<td>Std. Err.</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>-0.1618</td>
<td>0.1186</td>
<td>-1.36</td>
</tr>
<tr>
<td>Bicycle Flow for 10s before</td>
<td>0.0827</td>
<td>0.0302</td>
<td>2.74</td>
</tr>
<tr>
<td>Turning-Vehicle Flow for 15s before to 15s after</td>
<td>-1.3938</td>
<td>0.0342</td>
<td>-40.79</td>
</tr>
<tr>
<td>Cut-off 1</td>
<td>-7.4890</td>
<td>0.2074</td>
<td>-37.56</td>
</tr>
<tr>
<td>Cut-off 2</td>
<td>-3.5944</td>
<td>0.1243</td>
<td>-29.50</td>
</tr>
<tr>
<td>Cut-off 3</td>
<td>-2.0168</td>
<td>0.1132</td>
<td>-18.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model III. Cycle track on the right vs. cycle track on the left</th>
<th>Number of Observations = 6567</th>
<th>Log likelihood = -4030</th>
<th>Pseudo R² = 0.291</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Track on Left</td>
<td>Coef.</td>
<td>Std. Err.</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>-0.5351</td>
<td>0.0921</td>
<td>-5.81</td>
</tr>
<tr>
<td>Bicycle Flow for 10s before</td>
<td>0.6000</td>
<td>0.0268</td>
<td>2.23</td>
</tr>
<tr>
<td>Turning-Vehicle Flow for 15s before to 15s after</td>
<td>-1.3544</td>
<td>0.0304</td>
<td>-44.52</td>
</tr>
<tr>
<td>Number of Lane on the Main Road</td>
<td>-0.1592</td>
<td>0.0660</td>
<td>-2.41</td>
</tr>
<tr>
<td>Number of Lane on the Turning Road</td>
<td>0.3855</td>
<td>0.1144</td>
<td>3.37</td>
</tr>
<tr>
<td>Cut-off 1</td>
<td>-7.7501</td>
<td>0.3077</td>
<td>-25.56</td>
</tr>
<tr>
<td>Cut-off 2</td>
<td>-3.7916</td>
<td>0.2684</td>
<td>-14.26</td>
</tr>
<tr>
<td>Cut-off 3</td>
<td>-2.2953</td>
<td>0.2650</td>
<td>-8.64</td>
</tr>
</tbody>
</table>

N. Saunier, Polytechnique Montréal
Step 6: Interpretation

Cluster 1 - 23.1% (28/121)
Cluster 2 - 42.7% (35/82)
Cluster 3 - 0.0% (0/8)
Cluster 4 - 42.1% (8/19)
Cluster 5 - 38.5% (5/13)
Cluster 6 - 11.5% (6/52)
Step 6: Interpretation

Cluster 1 - 19.4\% (13/67)

Cluster 2 - 38.2\% (55/144)

Cluster 3 - 33.3\% (3/9)

Cluster 4 - 5.0\% (1/20)
Outline

1. Introduction
2. Past and Current Research
3. Perspectives
Open Questions

- How can we aggregate indicators over time and space (and severity), without hiding information?
Open Questions

- How can we aggregate indicators over time and space (and severity), without hiding information?
- How can we compare the various methods and indicators?
Open Questions

- How can we aggregate indicators over time and space (and severity), without hiding information?
- How can we compare the various methods and indicators?
- How do we validate the methods? With respect to what?
Open Questions

- How can we aggregate indicators over time and space (and severity), without hiding information?
- How can we compare the various methods and indicators?
- How do we validate the methods? With respect to what?
- How do we account for exposure? Conflicts are, by definition, not exposure [Hauer, 1982]
Other Projects

- Automated calibration and validation of traffic micro-simulation based on video observations
- Lighting and safety
- Traffic monitoring, probe data
- Naturalistic driving studies
- Vehicle automation
Some Proselytizing: Open Science

Science requires that anyone can replicate published work independently.
Some Proselytizing: Open Science

- Science requires that anyone can replicate published work independently.
- Internet is an enabler for sharing data and tools (software).
Some Proselytizing: Open Science

- Science requires that anyone can replicate published work independently.
- Internet is an enabler for sharing data and tools (software).
 - We should share our code, at least freely with the research community, ideally as open source software, to collaborate with other researchers to improve their (open source) methods.
Some Proselytizing: Open Science

- Science requires that anyone can replicate published work independently.
- Internet is an enabler for sharing data and tools (software):
 - we should share our code, at least freely with the research community, ideally as open source software, to collaborate with other researchers to improve their (open source) methods.
 - we should share our data, use benchmarks to compare to other methods (collaboration with Lund).
Collaboration with Tarek Sayed (UBC), Karim Ismail (Carleton), Marilyne Brosseau, Mohamed Gomaa Mohamed, Paul St-Aubin (Polytechnique Montréal), Luis Miranda-Moreno, Sohail Zangenehpour (McGill), Aliaksei Laureshyn (Lund)

Funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Québec Research Fund for Nature and Technology (FRQNT) and the Québec Ministry of Transportation (MTQ)

Questions?