A Prototype System for Truck Signal Priority using Video Sensors

Nicolas Saunier*, Tarek Sayed and Clark Lim
University of British Columbia

(* now at École Polytechnique de Montréal)
Research Sponsors

- Agency Funding partners of BITSAFS-Engineering (Bureau of Intelligent Transportation Systems and Freight Security):
 - Transport Canada,
 - B.C. Ministry of Transportation and Investment,
 - TransLink.
Outline

1. Motivation
2. Object Classification in Images
3. Experimental Results
4. Conclusion
Why Truck Priority?

• Benefits:
 • Reduce the cost of goods transportation.
 • Reduce red light running.
 • Encourage trucks to use specific truck routes.
 • Reduce emissions.

• This requires the ability to detect and track trucks.
Video Sensors

- Video sensors have distinct advantages:
 - they are easy to install (or can be already installed),
 - they are inexpensive,
 - they can provide rich traffic description (e.g. road user tracking),
 - they can cover large areas,
 - their recording allows verification at any later stage.
Detecting and Tracking Trucks

- Image Sequence + Camera Calibration
- Road User Trajectories
- Background Model
- Labeled Truck Images
- Truck Classifier
- Road User Classification
Object Detection in Images

• Two types of object description variables:
 • describing the appearance.
 – e.g. SIFT, HoG features.
 • describing the shape.
 – e.g. (3D-)models, moments.
Shape Description

- Extract a shape using background subtraction.

- Compute the moments of the shape.

\[m_{p, q} = \iint f(x, y) x^p y^q \, dx \, dy \]

\(f(x, y) = 1 \) if the pixel at \((x, y)\) is in the foreground
\(0 \) if the pixel at \((x, y)\) is in the background
Learn a Truck Classifier

- Using machine learning to learn a binary classifier (truck vs. other road users).

- The classifier returns a decision for each shape at each instant. A threshold $nDetections$ is used to detect a truck.
Experimental Results

X axis: 1-Recall\textsubscript{non-truck}
also called false alarm rate

Y axis: \textit{Recall}\textsubscript{truck}
also called true positive rate

DT: Decision Tree
RF: Random Forest
Experimental Results

- The recall for trucks reaches 78% to 95% on test data, with a false alarm rate below the 0.5% value used for the system simulation.

<table>
<thead>
<tr>
<th>Time</th>
<th>Decision Tree</th>
<th>Full</th>
<th>Small</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:05 to 8:20</td>
<td>Full</td>
<td>44</td>
<td>117</td>
<td>78.57</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td></td>
<td></td>
<td>23.81</td>
</tr>
<tr>
<td>Random Forest</td>
<td>Full</td>
<td>19</td>
<td>73</td>
<td>78.57</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td></td>
<td></td>
<td>40.48</td>
</tr>
<tr>
<td>8:20 to 8:35</td>
<td>Full</td>
<td>29</td>
<td>111</td>
<td>92.31</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td></td>
<td></td>
<td>38.46</td>
</tr>
<tr>
<td>Random Forest</td>
<td>Full</td>
<td>12</td>
<td>89</td>
<td>94.87</td>
</tr>
<tr>
<td></td>
<td>Small</td>
<td></td>
<td></td>
<td>10.26</td>
</tr>
</tbody>
</table>
Experimental Results
Experimental Results: TkSP

- TkSP: green extension or red truncation.
- Conventional / Advanced TkSP: prediction of truck arrival time and queue dissipation time thanks to real-time tracking.
- Detection at 300m from the intersection.
- Simulation of the Knight St corridor in Vancouver B.C. (3 intersections with TkSP).
- The Advanced TkSP strategy outperformed conventional TkSP strategy.
Experimental Results: TkSP

- Especially effective
 - at two-phased intersections,
 - when traffic volume was less than that of the morning peak hour,
 - when truck proportion was equal to or less than 2%,
 - and when priority was not locked after a green extension or red truncation.

- Under the best conditions, average truck travel times were reduced by 9.16% and 0.93% in the peak and opposing directions, respectively.
Conclusion

● Prototype system for truck detection and tracking using video sensors.

● Tested on real world data: high recall for trucks, from 78% to 95%, and a false alarm rate below the 0.5% value used for simulation.

● Future work:
 ● classify all road users and include other description variables,
 ● multi-camera system.
Questions?