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1. Road Safety1. Road Safety

● Traditional road safety reactive approach, 
based on historical collision data.

● Pro-active approach: "Don't wait for 
accidents to happen".

● Need for surrogate safety measures that 
provide complementary information and 
are easy to collect (more frequent).

● Traffic conflicts (near-misses).
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1. The Collision Probability1. The Collision Probability

● The safety/severity 
hierarchy.

● For two interacting road 
users, there are various 
chain of events that 
can lead to a collision.
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● Given extrapolation hypotheses for road 
users,
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1. Simple Example1. Simple Example
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1. A Modular System1. A Modular System

●Motion Patterns
●Volume, Origin-
Destination Counts
●Driver Behavior...

Trajectory Database Interaction Database

●Traffic Conflict 
Detection
●Exposure Measures
●Interacting 
Behavior...

Image Sequence

Interpretation 
Modules
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2. Motion Patterns2. Motion Patterns

● How to predict road users' future 
positions to compute the collision 
probability ?

● Road users do not move randomly. Typical 
road users movements, traffic motion 
patterns, can be learnt from the 
observation of traffic data.

● Incremental learning of trajectory 
prototypes. 
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2. Algorithm Ingredients2. Algorithm Ingredients

● choose a suitable data 
representation of motion 
patterns,

● define a distance or similarity 
measure between trajectories 
or between trajectories and 
motion patterns,

● define a method to update the 
motion patterns.

→ trajectory prototypes

→ LCSS

→ keep longer trajectories
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2. Longest Common 2. Longest Common 
Subsequence SimilaritySubsequence Similarity

● Distance DLCSS = 1 - LCSS/min(n,m).
● The LCSS can be computed by a dynamic 

programming algorithm in O(nm).
● This is costly but robust and flexible. 
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2. Learning Algorithm2. Learning Algorithm

● Parameters: matching distance, matching 
threshold, NOT the number of patterns.
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2. Use of Prototype Trajectories2. Use of Prototype Trajectories

● Probabilities of hypotheses are derived 
from the number of matched trajectories.

● The input to the algorithm are feature 
trajectories (available in abundance), 
instead of noisy reconstituted object 
trajectories.

● At prediction time, the feature trajectories 
are matched against all prototype 
trajectories. 
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3. Motion Patterns3. Motion Patterns

128 prototype trajectories
(88255 trajectories)

58 prototype trajectories
(2941 trajectories)

58 prototype trajectories
(138009 trajectories)
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3. Traffic Conflicts3. Traffic Conflicts
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3. Collision Probability3. Collision Probability
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ConclusionConclusion

● Probabilistic framework for automated 
road safety analysis.

● Complete system for automated traffic 
data collection: traffic intelligence.

● Robustness and versatility of feature 
tracking.

● Make the program available. 
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Future WorkFuture Work

● Improve vehicle detection and tracking: 
detect shadows, estimate vehicle size.

● Extensions:
– Road user identification: trucks, buses, 

vehicles, two-wheels and pedestrians.
– Pedestrian tracking and modeling.
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THANK YOU !


