Stream-Based Learning through Data Selection in a Road Safety Application

Nicolas Saunier INRETS – Telecom Paris Sophie Midenet INRETS Alain Grumbach Telecom Paris

STAIRS 2004 23-24 juin 2004

- Goal: road safety application.
- The learning problem.
- The algorithms.
- Experimental results.

- Consequences of the regulation in a signalized intersection on the behavior, the discomfort and the risk undergone by users.
- Study of vehicle interactions,
 - detections of interactions in the conflict zone,
 - severity evaluation: spatio-temporal distance between the interaction and the accident.
- Severity indicators,
 - difficult interpretation of the data,
 - labels can be obtained: learning problem.

Examples of interaction categories

IF movement(C, $1 \rightarrow C$) \cap stationary(2) *THEN* interaction (cat Stat. Cross) *IF* movement(C, $1 \rightarrow C$) \cap movement(2) *THEN* interaction (cat Moving Cross)

Learning the severity

8 months experiments on a real intersection.
Multi-purpose data, dynamic information.
Data + available labels = learning problem.

The learning problem

- Features:
 - sequential access,
 - expert judgement: model the uncertainty with fuzzy classes (progressive boundaries),
 - N classes and N-1 "fuzzy",
 - closeness / overlapping of the classes,
 - unbalanced dataset.

Difficult learning problem: poor performance with passive batch learning.

- Incremental algorithm:
 - "intelligent" data selection of instances, in order to specify the boundaries: distortion of the real data distribution.
- Active learning:

Active learning

Criterion for data selection:

- uncertainty sampling,
- query by comittee,
- version space,
- expected future error.

[Schohn et al. 2000, Tong 2001, Freund et al. 1997]

- initialization: hypothesis h.
- for each instance xt, if selection criterion satisfied
 - update of hypothesis h.
- until stopping criterion.
- Main elements:
 - Selection criterion,
 - Stopping criterion and choice of the final hypothesis.

Selection criterion

Selection

- of unlabeled instances: adaptation of criteria used in the pool-based setting ?
- of labeled instances: misclassified instances (Windowing). [Fürnkranz 98]
- Labeling of all instances,
 - misclassified instances by the current hypothesis h,
 - no use of fuzzy-labeled instances.

Stopping criterion

- Difficult to estimate the quality of the learnt hypotheses (validation set).
- Improvement of the quality of learnt hypotheses (robustness, stability),
 - combination of hypotheses (Bagging, Boosting): Vote of the last learnt hypotheses.
 - parameter: number of combined hypotheses.

Let i be the number of selected instances, Let h_i be the hypothesis learnt after the selection of i instances, Let Vote_{i,j} be the hypothesis obtained by taking majority

vote over the hypotheses $\{h_k, i \le j\}$.

- initialization: hypothesis h₀, i=0

- for each instance x_t , ask for its label y_t
- if (y_t is not fuzzy) and (Vote_{max(0,i-n),i}(x_t) \neq y_t)

- update of hypothesis h_i in h_{i+1}

- i=i+1

- while the expert is willing to label.

Results on benchmarks

Base	Batch	MC	Number of selected instances
Soybean	93,9	90,2	93 / 596
Vote	90,3	95,2	24 / 390
Spambase	84,9	82,0	852 / 4139
Iris disc	96,0	93,3	17 / 132

UCI repository of machine learning databases

naïve bayes classifiers (estimate conditional probabilities, assuming the independence of attributes) 10-fold cross-validation

like Windowing in a random order.

Results on severity (1/2)

Percentage of correctly classified instances

Accuracy

4 x 10 minutes (2 traffic conditions): 371 exemples for test.

Results on severity (2/2)

Final performance:

		MC	BATCH	BAGGING	BATCH-EQ	BATCH-EQ-MC
	Correctly classified	71,7 ± 1,6	64,9 ± 0,5	66,2 ± 1,0	64,3 ± 1,0	61,7 ± 1,4
NIN	Correctly classified	78,3 ± 2,5	84,0 ± 1,0	82,2 ± 1,7	82,8 ± 2,0	83,8 ± 1,4
2	Precision	75,4 ± 3,5	53,8 ± 1,0	58,1 ± 2,9	56,5 ± 2,6	50,2 ± 2,1
ED	Correctly classified	71,2 ± 2,3	58,9 ± 0,5	60,8 ± 1,7	57,0 ± 1,5	52,8 ± 2,6
2	Pre cision	78,2 ± 1,8	77,7 ± 0,4	77,8 ± 1,2	77,5 ± 0,9	78,3 ± 2,0
IAX	Correctly classified	68,5 ± 3,9	65,3 ± 0,9	67,2 ± 2,9	67,8 ± 1,7	66,1 ± 3,4
Σ	Precision	59,2 ± 2,3	57,0 ± 0,7	56,8 ± 2,1	54,2 ± 1,4	53,1 ± 1,9

Precision for class $A =$	Number of instances compathy alagrified in alagri	1	predicted \ true	A	В	
	Number of instances correctly classified in class A	=	А	1	2]
	Number of instances classified in class A	1+2	В	3	4	1

Conclusion

- Promising incremental algorithm.
- Future work:
 - intelligent combination of hypotheses: better than Vote ?
 - extension to longer periods to process the database: detection of concept drift, performance monitoring.