Automatic detection of vehicle interactions in a signalized intersection,

Nicolas Saunier, Sophie Midenet, Alain Grumbach

International Cooperation on Theories and Concepts in Traffic safety

30/10/2003
1. The problem

■ Purpose ?
 • Comparison of traffic light control strategies and their influence on the behavior and safety of road users.

■ How ?
 • Automatic detection of interactions between road users.
 • Based on video sensors.
 • A real experiment, yielding a large database:
 → 1 intersection, with 4 traffic lights control strategies, over a period of 8 months.
2. Our approach

■ Intersection: critical zone, especially the conflict zone,
 • role of the traffic lights,
 • study traffic events occurring in the conflict zone.

■ Traffic events relevant to safety?
 • Accidents,
 • Traffic conflicts,

■ Interactions, with or without a collision course.
2. Our approach: the severity

- Detect interactions and quantify their severity:
 - the distance between the interaction and the potential accident,
 - calculated in function of the features of the data,
 - interpretation: the distribution of the severity of the interactions.

- Previous work on vehicle-actuated strategies (R. van der Horst 88),
 - but no comparison with real time strategies (INRETS CRONOS).
2. A categorization of interactions

- A mobile = a road user + his vehicle.

- Categorization: *detection on the level of the zones*,
 - presence of mobiles,
 - collision course: mobiles in upstream storing zones have to cross the conflict zone,
 - not all interactions (no interactions within groups).
2. The categories to be detected

- Conflict zone
- Stationary mobile
- Stop line with traffic lights
- Moving mobile
- Storing zones
- Stationary mobile

- Downstream category
- Moving mobile
- Stationary cross traffic category
- Moving cross traffic category
3. The intersection

- An urban intersection, near Paris.
3. The data

- Surface data from video sensors: robust image processing tool.
- Basic discrete occupancy information: emptiness, presence of moving mobiles, and presence of stationary mobiles (no type of vehicle).

- A mobile or group of mobiles stopped behind a stop line.
- A mobile or a group of mobiles in the conflict zone, coming from an upstream storing zone.
- A mobile or group of mobiles arriving at the stop line (lane 1).

- Presence at time t
- Presence at time t-1
- Trace of presence between t-1 and t
- Lane 1
- Lane 2
- Emptiness
- Stop line
- Direction of traffic flow
3. The image of the intersection

- Processed several times a second, combined every second in an image of the occupancy of the intersection.

These two zones are directly linked in reality: the distances are distorted in the images.

Occupy information:
- emptiness
- trace
- head
- queue
- presence of moving vehicle
- presence of stationary vehicle
- stop line
- right direction of traffic flow
3. Interactions in the data

- Configurations of connected sets of units of presence, called blobs.

 - Interaction of the stationary cross traffic category
 - Interaction of the downstream category
 - Interaction of the moving cross traffic category

 Direction of traffic flow
3. Severity indicators

- Information in the data: *speed and distance*.

- No complex indicator, no evasive actions.

- 2 indicators:
 - extrapolated proximity: minimal extrapolated distance between the protagonists,
 - speed differential: norm of the difference of the speed-vectors of the protagonists.

- Severity: the closer the protagonists, the higher the speed differential, the more severe the interaction.
4. Development

- Rough data, but automatic detection for the treatment of large databases.
- No kinematics: work on images separately with pattern recognition methods.

Image at time t

Detection of interactions
rule-based system

Set of interactions
classified by context
location/category

Interaction in image at time t

Evaluation of severity indicators
explicit computation & supervised learning

Severity indicators:
extrapolated proximity, speed differential
4. Evaluating the severity indicators

- Multi-sensor data, disaggregation of the analysis:
 - compare interactions per location and category (context).

- Severity indicators: different difficulty in the tasks
 - extrapolated proximity: computed explicitly,
 - speed differential: supervised learning, which is more robust as the information is spread over the image.

- Goal: compare distributions (per context).
4. Focus on interactions

- More than one interaction can be detected in the same image and context:
 - ambiguity in the output.

- The *focusing* problem: how to weigh the relative usefulness of the parts of the input?
 - different techniques.
5. Current results and validation

- Validation of the detection of interactions with respect to the reality (video) (10 minutes):
 - about 90 % of correct detections.

- Learning of the speed differential with a focusing technique and an artificial neural network:
 - 88% in generalization.
6. Conclusion

■ No implementation of a Traffic Conflict Technique.
■ Treat large databases automatically.
■ Compare traffic light control strategies.
■ General purpose video data (control, AID, safety diagnosis...).
■ New safety diagnosis tool for traffic management at intersections.
■ Work in progress.